skip to main content

Title: Real-Time Traffic Pattern Collection and Analysis Model for Intelligent Traffic Intersection
The traffic congestion hits most big cities in the world - threatening long delays and serious reductions in air quality. City and local government officials continue to face challenges in optimizing crowd flow, synchronizing traffic and mitigating threats or dangerous situations. One of the major challenges faced by city planners and traffic engineers is developing a robust traffic controller that eliminates traffic congestion and imbalanced traffic flow at intersections. Ensuring that traffic moves smoothly and minimizing the waiting time in intersections requires automated vehicle detection techniques for controlling the traffic light automatically, which are still challenging problems. In this paper, we propose an intelligent traffic pattern collection and analysis model, named TPCAM, based on traffic cameras to help in smooth vehicular movement on junctions and set to reduce the traffic congestion. Our traffic detection and pattern analysis model aims at detecting and calculating the traffic flux of vehicles and pedestrians at intersections in real-time. Our system can utilize one camera to capture all the traffic flows in one intersection instead of multiple cameras, which will reduce the infrastructure requirement and potential for easy deployment. We propose a new deep learning model based on YOLOv2 and adapt the model for the more » traffic detection scenarios. To reduce the network burdens and eliminate the deployment of network backbone at the intersections, we propose to process the traffic video data at the network edge without transmitting the big data back to the cloud. To improve the processing frame rate at the edge, we further propose deep object tracking algorithm leveraging adaptive multi-modal models and make it robust to object occlusions and varying lighting conditions. Based on the deep learning based detection and tracking, we can achieve pseudo-30FPS via adaptive key frame selection. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
2018 IEEE International Conference on Edge Computing (EDGE)
Sponsoring Org:
National Science Foundation
More Like this
  1. Traffic intersections are prime locations for deployment of infrastructure sensors and edge computing nodes to realize the vision of a smart city. It is expected that the needs of a smart city, in regards to traffic and pedestrian traffic systems monitored by cameras/video, can be met by using stateof-the-art artificial-intelligence (AI) based object detectors and trackers. A critical component in designing an effective real-time object detection/tracking pipeline is the understanding of how object density, i.e., the number of objects in a scene, and imageresolution and frame rate influence the performance metrics. This study explores the accuracy and speed metrics with the goal of supporting pipelines that meet the precision and latency needs of a real-time environment. We examine the impact of varying image-resolution, frame rate and object-density on the object detection performance metrics. The experiments on the COSMOS testbed dataset show that varying the frame width from 416 pixels to 832 pixels, and cropping the images to a square resolution, result in the increase in average precision for all object classes. Decreasing the frame rate from 15 fps to 5 fps preserves more than 90% of the highest F1 score achieved for all object classes. The results inform the choicemore »of video preprocessing stages, modifications to established AI-based object detection/tracking methods, and suggest optimal hyper-parameter values. Index Terms—Object Detection, Smart City, Video Resolution, Deep Learning Models.« less
  2. The smart parking industry continues to evolve as an increasing number of cities struggle with traffic congestion and inadequate parking availability. For urban dwellers, few things are more irritating than anxiously searching for a parking space. Research results show that as much as 30% of traffic is caused by drivers driving around looking for parking spaces in congested city areas. There has been considerable activity among researchers to develop smart technologies that can help drivers find a parking spot with greater ease, not only reducing traffic congestion but also the subsequent air pollution. Many existing solutions deploy sensors in every parking spot to address the automatic parking spot detection problems. However, the device and deployment costs are very high, especially for some large and old parking structures. A wide variety of other technological innovations are beginning to enable more adaptable systems-including license plate number detection, smart parking meter, and vision-based parking spot detection. In this paper, we propose to design a more adaptable and affordable smart parking system via distributed cameras, edge computing, data analytics, and advanced deep learning algorithms. Specifically, we deploy cameras with zoom-lens and motorized head to capture license plate numbers by tracking the vehicles when theymore »enter or leave the parking lot; cameras with wide angle fish-eye lens will monitor the large parking lot via our custom designed deep neural network. We further optimize the algorithm and enable the real-time deep learning inference in an edge device. Through the intelligent algorithm, we can significantly reduce the cost of existing systems, while achieving a more adaptable solution. For example, our system can automatically detect when a car enters the parking space, the location of the parking spot, and precisely charge the parking fee and associate this with the license plate number.« less
  3. Camera-based systems are increasingly used for collecting information on intersections and arterials. Unlike loop controllers that can generally be only used for detection and movement of vehicles, cameras can provide rich information about the traffic behavior. Vision-based frameworks for multiple-object detection, object tracking, and near-miss detection have been developed to derive this information. However, much of this work currently addresses processing videos offline. In this article, we propose an integrated two-stream convolutional networks architecture that performs real-time detection, tracking, and near-accident detection of road users in traffic video data. The two-stream model consists of a spatial stream network for object detection and a temporal stream network to leverage motion features for multiple-object tracking. We detect near-accidents by incorporating appearance features and motion features from these two networks. Further, we demonstrate that our approaches can be executed in real-time and at a frame rate that is higher than the video frame rate on a variety of videos collected from fisheye and overhead cameras.
  4. The density and complexity of urban environments present significant challenges for autonomous vehicles. Moreover, ensuring pedestrians’ safety and protecting personal privacy are crucial considerations in these environments. Smart city intersections and AI-powered traffic management systems will be essential for addressing these challenges. Therefore, our research focuses on creating an experimental framework for the design of applications that support the secure and efficient management of traffic intersections in urban areas. We integrated two cameras (street-level and bird’s eye view), both viewing an intersection, and a programmable edge computing node, deployed within the COSMOS testbed in New York City, with a central management platform provided by Kentyou. We designed a pipeline to collect and analyze the video streams from both cameras and obtain real-time traffic/pedestrian-related information to support smart city applications. The obtained information from both cameras is merged, and the results are sent to a dedicated dashboard for real-time visualization and further assessment (e.g., accident prevention). The process does not require sending the raw videos in order to avoid violating pedestrians’ privacy. In this demo, we present the designed video analytic pipelines and their integration with Kentyou central management platform. Index Terms—object detection and tracking, camera networks, smart intersection, real-time visualization
  5. Real-time traffic data at intersections is significant for development of adaptive traffic light control systems. Sensors such as infrared radiation and GPS are not capable of providing detailed traffic information. Compared with these sensors, surveillance cameras have the potential to provide real scenes for traffic analysis. In this research, a You Only Look Once (YOLO)-based algorithm is employed to detect and track vehicles from traffic videos, and a predefined road mask is used to determine traffic flow and turning events in different roads. A Kalman filter is used to estimate and predict vehicle speed and location under the condition of background occlusion. The result shows that the proposed algorithm can identify traffic flow and turning events at a root mean square error (RMSE) of 10. The result shows that a Kalman filter with an intersection of union (IOU)-based tracker performs well at the condition of background occlusion. Also, the proposed algorithm can detect and track vehicles at different optical conditions. Bad weather and night-time will influence the detecting and tracking process in areas far from traffic cameras. The traffic flow extracted from traffic videos contains road information, so it can not only help with single intersection control, but also providesmore »information for a road network. The temporal characteristic of observed traffic flow gives the potential to predict traffic flow based on detected traffic flow, which will make the traffic light control more efficient.« less