skip to main content


Search for: All records

Award ID contains: 1637371

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Edge application’s distributed nature presents significant challenges for developers in orchestrating and managing the multitenant applications. In this paper, we propose a practical edge cloud software framework for deploying multitenant distributed smart applications. Here we exploit commodity, a low cost embedded board to form distributed edge clusters. The cluster of geo-distributed and wireless edge nodes not only power multitenant IoT applications that are closer to the data source and the user, but also enable developers to remotely deploy and orchestrate application containers over the cloud. Specifically, we propose building a software platform to manage the distributed edge nodes along with support services to deploy and launch isolated and multitenant user applications through a lightweight container. In particular, we propose an architectural solution to improve the resilience of edge cloud services through peer collaborated service migration when the failures happen or when resources are overburdened. We focus on giving the developers a single point control of the infrastructure over the intermittent and lossy wide area networks (WANs) and enabling the remote deployment of multitenant applications. 
    more » « less
  2. Cloud virtualization and multi-tenant networking provide Infrastructure as a Service (IaaS) providers a new and innovative way to offer on-demand services to their customers, such as easy provisioning of new applications and better resource efficiency and scalability. However, existing data-intensive intelligent applications require more powerful processors, higher bandwidth and lower-latency networking service. In order to boost the performance of computing and networking services, as well as reduce the overhead of software virtualization, we propose a new data center network design based on OpenStack. Specifically, we map the OpenStack networking services to the hardware switch and utilize hardware-accelerated L2 switch and L3 routing to solve the software limitations, as well as achieve software-like scalability and flexibility. We design our prototype system via the Arista Software-Defined-Networking (SDN) switch and provide an automatic script which abstracts the service layer that decouples OpenStack from the physical network infrastructure, thereby providing vendor-independence. We have evaluated the performance improvement in terms of bandwidth, delay, and system resource utilization using various tools and under various Quality-of-Service (QoS) constraints. Our solution demonstrates improved cloud scaling and network efficiency via only one touch point to control all vendors' devices in the data center. 
    more » « less
  3. Near field communication (NFC), which emerged only a decade ago, has been rapidly adopted in business services including point-of-sale (POS) systems, payments, identification, ticketing, and various other types of services. NFC offers great and varied promise in providing secure and implicit paired communication capability in smartphones. As a short-range wireless communication technology, the level of "secure" is contributed by the short-range nature. Compared with other competitive technologies, NFC achieves physical-level security but sacrifices convenience. For example, NFC cannot achieve device-free or hands-free payment transactions like the service provided by PayPal called PayPal beacon which utilizes Bluetooth-low-energy (BLE) technology. In this paper, we propose a low-cost wearable device that can achieve better physical-level security than NFC provides. This system is compatible with existing NFC-based POS systems and can help users realize a convenient hands-free payment transaction. Specifically, a custom NFC wristband was designed to channel its magnetic field through the human arm. By confining the magnetic field in NFC to the area around the body, we could minimize energy radiation, reduce the possibility of communication sniffing and hijackings, and improve security. To evaluate this approach, we conducted various experiments via different configurations. The results showed that the communication range for the human body channel was greater than that of the air and water channels. In addition, through this study we demonstrated that the human body is a naturally secure channel, and hacking and nearby interference are minimized during such communication. Our system also defines a new way of communication, for example, people can share confidential information with a simple handshake without pulling out and touching, or tapping smartphones. 
    more » « less
  4. The smart parking industry continues to evolve as an increasing number of cities struggle with traffic congestion and inadequate parking availability. For urban dwellers, few things are more irritating than anxiously searching for a parking space. Research results show that as much as 30% of traffic is caused by drivers driving around looking for parking spaces in congested city areas. There has been considerable activity among researchers to develop smart technologies that can help drivers find a parking spot with greater ease, not only reducing traffic congestion but also the subsequent air pollution. Many existing solutions deploy sensors in every parking spot to address the automatic parking spot detection problems. However, the device and deployment costs are very high, especially for some large and old parking structures. A wide variety of other technological innovations are beginning to enable more adaptable systems-including license plate number detection, smart parking meter, and vision-based parking spot detection. In this paper, we propose to design a more adaptable and affordable smart parking system via distributed cameras, edge computing, data analytics, and advanced deep learning algorithms. Specifically, we deploy cameras with zoom-lens and motorized head to capture license plate numbers by tracking the vehicles when they enter or leave the parking lot; cameras with wide angle fish-eye lens will monitor the large parking lot via our custom designed deep neural network. We further optimize the algorithm and enable the real-time deep learning inference in an edge device. Through the intelligent algorithm, we can significantly reduce the cost of existing systems, while achieving a more adaptable solution. For example, our system can automatically detect when a car enters the parking space, the location of the parking spot, and precisely charge the parking fee and associate this with the license plate number. 
    more » « less
  5. Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping the blind and elderly navigate to their destinations in a hassle-free manner. Riders often face challenges in driving scooters in some indoor and crowded places, especially on sidewalks with numerous obstacles and other pedestrians. People with certain disabilities, such as the blind, are often unable to drive their scooters well enough. In this paper, we propose to improve the safety and autonomy of the navigation by designing a cutting-edge autonomous scooter, which allows people with mobility challenges to navigate independently and safely in possibly unfamiliar surroundings. We focus on the localization and navigation challenges for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. Solving these challenges will enable the scooter to both travel within buildings and perform tight maneuvers in densely crowds automatically. 
    more » « less
  6. The Internet of Things (IoT) is an emerging technology that aims to connect our environment to the internet in the same way that personal computers connected people. As this technology progresses, the IoT paradigm becomes more prevalent in our everyday lives. The nature of IoT applications necessitates devices that are low-cost, power-sensitive, integrated, unobtrusive, and interoperable with existing cloud platforms and services, for example, Amazon AWS IoT, IBM Watson IoT. As a result, these devices are often small in size, with just enough computing power needed for their specific tasks. These resource-constrained devices are often unable to implement traditional network security measures and represent a vulnerability to network attackers as a result. Few frameworks are positioned to handle the influx of this new technology and the security concerns associated with it. Current solutions fail to provide a comprehensive and multi-layer solution to these inherent IoT security vulnerabilities. This paper presents a layered approach to IoT testbed that aims to bridge multiple connection standards and cloud platforms. To solve challenges surrounding this multi-layer IoT testbed, we propose a mesh inside a mesh IoT network architecture. Our designed "edge router" incorporates two mesh networks together and performs seamlessly transmission of multi-standard packets. The proposed IoT testbed interoperates with existing multi-standards (Wi-Fi, 6LoWPAN) and segments of networks, and provides both Internet and resilient sensor coverage to the cloud platform. To ensure confidentiality and authentication of IoT devices when interoperating with multiple service platforms, we propose optimized cryptographic techniques and software frameworks for IoT devices. We propose to extend and modify the existing open-source IDS platforms such as Snort to support IoT platforms and environments. We validate the efficacy of the proposed system by evaluating its performance and effect on key system resources. The work within this testbed design and implementation provides a solid foundation for further IoT system development. 
    more » « less
  7. The traffic congestion hits most big cities in the world - threatening long delays and serious reductions in air quality. City and local government officials continue to face challenges in optimizing crowd flow, synchronizing traffic and mitigating threats or dangerous situations. One of the major challenges faced by city planners and traffic engineers is developing a robust traffic controller that eliminates traffic congestion and imbalanced traffic flow at intersections. Ensuring that traffic moves smoothly and minimizing the waiting time in intersections requires automated vehicle detection techniques for controlling the traffic light automatically, which are still challenging problems. In this paper, we propose an intelligent traffic pattern collection and analysis model, named TPCAM, based on traffic cameras to help in smooth vehicular movement on junctions and set to reduce the traffic congestion. Our traffic detection and pattern analysis model aims at detecting and calculating the traffic flux of vehicles and pedestrians at intersections in real-time. Our system can utilize one camera to capture all the traffic flows in one intersection instead of multiple cameras, which will reduce the infrastructure requirement and potential for easy deployment. We propose a new deep learning model based on YOLOv2 and adapt the model for the traffic detection scenarios. To reduce the network burdens and eliminate the deployment of network backbone at the intersections, we propose to process the traffic video data at the network edge without transmitting the big data back to the cloud. To improve the processing frame rate at the edge, we further propose deep object tracking algorithm leveraging adaptive multi-modal models and make it robust to object occlusions and varying lighting conditions. Based on the deep learning based detection and tracking, we can achieve pseudo-30FPS via adaptive key frame selection. 
    more » « less
  8. In a world where the number of smart cities is growing exponentially, there is a myriad of IoT devices which are generating immense data, 24Ă—7. Centralized cloud data centers responsible for handling this huge data are being rapidly replaced with distributed edge nodes which move the computation closer to the users to provide low latencies for real-time applications. The proposed enhancements capitalizes on this design and proposes an effective way to achieve fault tolerance in the system. The concept of docker container migration is used to provide a near-zero downtime system on a distributed edge cloud architecture. An intuitively simple and visually attractive dashboard design is also being presented in this paper to remotely access the edge cloud management services. 
    more » « less