skip to main content


Title: Autonomous Scooter Navigation for People with Mobility Challenges
Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping the blind and elderly navigate to their destinations in a hassle-free manner. Riders often face challenges in driving scooters in some indoor and crowded places, especially on sidewalks with numerous obstacles and other pedestrians. People with certain disabilities, such as the blind, are often unable to drive their scooters well enough. In this paper, we propose to improve the safety and autonomy of the navigation by designing a cutting-edge autonomous scooter, which allows people with mobility challenges to navigate independently and safely in possibly unfamiliar surroundings. We focus on the localization and navigation challenges for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. Solving these challenges will enable the scooter to both travel within buildings and perform tight maneuvers in densely crowds automatically.  more » « less
Award ID(s):
1637371
NSF-PAR ID:
10092487
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2018 IEEE International Conference on Cognitive Computing (ICCC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper proposes an AR-based real-time mobile system for assistive indoor navigation with target segmentation (ARMSAINTS) for both sighted and blind or low-vision (BLV) users to safely explore and navigate in an indoor environment. The solution comprises four major components: graph construction, hybrid modeling, real-time navigation and target segmentation. The system utilizes an automatic graph construction method to generate a graph from a 2D floorplan and the Delaunay triangulation-based localization method to provide precise localization with negligible error. The 3D obstacle detection method integrates the existing capability of AR with a 2D object detector and a semantic target segmentation model to detect and track 3D bounding boxes of obstacles and people to increase BLV safety and understanding when traveling in the indoor environment. The entire system does not require the installation and maintenance of expensive infrastructure, run in real-time on a smartphone, and can easily adapt to environmental changes. 
    more » « less
  2. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized faculty representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them in mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments. 
    more » « less
  3. Electric scooters (or e-scooters) are among the most popular micromobility options that have experienced an enormous expansion in urban transportation systems across the world in recent years. Along with the increased usage of e-scooters, the increasing number of e-scooter-related injuries has also become an emerging global public health concern. However, little is known regarding the risk factors for e-scooter-related crashes and injury crashes. This study consisted of a two-phase survey questionnaire administered to a cohort of e-scooter riders (n = 210), which obtained exposure information on riders’ demographics, riding behaviors (including infrastructure selection), helmet use, and other crash-related factors. The risk ratios of riders’ self-reported involvement in an e-scooter-related crash (i.e., any crash versus no crash) and injury crash (i.e., injury crash versus non-injury crash) were estimated across exposure subcategories using the Negative Binomial regression approach. Males and frequent users of e-scooters were associated with an increased risk of e-scooter-related crashes of any type. For the e-scooter-related injury crashes, more frequently riding on bike lanes (i.e., greater than 25% of the time), either protected or unprotected, was identified as a protective factor. E-scooter-related injury crashes were more likely to occur among females, who reported riding on sidewalks and non-paved surfaces more frequently. The study may help inform public policy regarding e-scooter legislation and prioritize efforts to establish suitable road infrastructure for improved e-scooter riding safety. 
    more » « less
  4. Navigation and obstacle avoidance in aquatic en-vironments for autonomous surface vehicles (ASVs) in high-traffic maritime scenarios is still an open challenge, as the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs) is not defined for multi-encounter situations. Current state-of-the-art methods resolve single-to-single encounters with sequential actions and assume that other obstacles follow COLREGs. Our work proposes a novel real-time non-myopic obstacle avoidance method, allowing an ASV that has only partial knowledge of the surroundings within the sensor radius to navigate in high-traffic maritime scenarios. Specifically, we achieve a holistic view of the feasible ASV action space able to avoid deadlock scenarios, by proposing (1) a clustering method based on motion attributes of other obstacles, (2) a geometric framework for identifying the feasible action space, and (3) a multi-objective optimization to determine the best action. Theoretical analysis and extensive realistic experiments in simulation considering real-world traffic scenarios demonstrate that our proposed real-time obstacle avoidance method is able to achieve safer trajectories than other state-of-the-art methods and that is robust to uncertainty present in the current information available to the ASV. 
    more » « less
  5. This paper considers the problem of fast and safe autonomous navigation in partially known environments. Our main contribution is a control policy design based on ellipsoidal trajectory bounds obtained from a quadratic state-dependent distance metric. The ellipsoidal bounds are used to embed directional preference in the control design, leading to system behavior that is adapted to local environment geometry, carefully considering medial obstacles while paying less attention to lateral ones. We use a virtual reference governor system to adaptively follow a desired navigation path, slowing down when system safety may be violated and speeding up otherwise. The resulting controller is able to navigate complex environments faster than common Euclidean-norm and Lyapunov-function-based designs, while retaining stability and collision avoidance guarantees. 
    more » « less