skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Massive MIMO Channel Estimation with 1-Bit Spatial Sigma-delta ADCs
We consider channel estimation for an uplink massive multiple input multiple output (MIMO) system where the base station (BS) uses a first-order spatial Sigma-Delta (Σ△) analog-to-digital converter (ADC) array. The Σ△ array consists of closely spaced sensors which oversample the received signal and provide a coarsely quantized (1-bit) output. We develop a linear minimum mean squared error (LMMSE) estimator based on the Bussgang decomposition that reformulates the nonlinear quantizer model using an equivalent linear model plus quantization noise. The performance of the proposed Σ△ LMMSE estimator is compared via simulation to channel estimation using standard 1-bit quantization and also infinite resolution ADCs.  more » « less
Award ID(s):
1703635 1824565
PAR ID:
10092587
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Page Range / eLocation ID:
4484 to 4488
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Spatial ΣΔ sampling has recently been proposed to improve the performance of massive MIMO systems with low-resolution quantization for cases where the users are confined to a certain angular sector, or the array is spatially oversampled. We derive a linear minimum mean squared error (LMMSE) channel estimator for the ΣΔ array based on an element-wise Bussgang decomposition that reformulates the nonlinear quantizer operation using an equivalent linear model plus quantization noise. Both the case of one- and two-bit quantization is considered. We then evaluate the achievable rate of the ΣΔ system assuming that a linear receiver based on the LMMSE channel estimate is used to decode the data. Our numerical results demonstrate that ΣΔ architecture is able to achieve superior channel estimates and sum spectral efficiency compared to conventional low-resolution quantized massive MIMO systems. 
    more » « less
  2. We propose SParsity-ADaptive Equalization (SPADE), a novel approach to reduce the effective number of multiplications in sparse inner products by adaptively skipping multiplications that have little to no effect on the result. We apply SPADE to beamspace linear minimum mean square error (LMMSE) spatial equalization in all-digital millimeter-wave (mmWave) massive multiuser multiple-input multiple-output (MU-MIMO) systems. We propose a SPADE-based architecture that mutes insignificant multiplications to offer power savings. We use simulation results with line-of-sight (LoS) and non-LoS mmWave channel models to demonstrate that SPADE-LMMSE performs on par with state-of-the-art beamspace equalizers in terms of bit error-rate, while requiring significantly lower preprocessing complexity. 
    more » « less
  3. Massive multiple-input multiple-output (MIMO) communications using low-resolution analog-to-digital converters (ADCs) is a promising technology for providing high spectral and energy efficiency with affordable hardware cost and power consumption. However, the use of low-resolution ADCs requires special signal processing methods for channel estimation and data detection since the resulting system is severely non-linear. This paper proposes joint channel estimation and data detection methods for massive MIMO systems with low-resolution ADCs based on the variational Bayes (VB) inference framework. We first derive matched-filter quantized VB (MF-QVB) and linear minimum mean-squared error quantized VB (LMMSE-QVB) detection methods assuming the channel state information (CSI) is available. Then we extend these methods to the joint channel estimation and data detection (JED) problem and propose two methods we refer to as MF-QVB-JED and LMMSE-QVB-JED. Unlike conventional VB-based detection methods that assume knowledge of the second-order statistics of the additive noise, we propose to float the elements of the noise covariance matrix as unknown random variables that are used to account for both the noise and the residual inter-user interference. We also present practical aspects of the QVB framework to improve its implementation stability. Finally, we show via numerical results that the proposed VB-based methods provide robust performance and also significantly outperform existing methods. 
    more » « less
  4. null (Ed.)
    We propose sparsity-adaptive beamspace channel estimation algorithms that improve accuracy for 1-bit data converters in all-digital millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) basestations. Our algorithms include a tuning stage based on Stein's unbiased risk estimate (SURE) that automatically selects optimal denoising parameters depending on the instantaneous channel conditions. Simulation results with line-of-sight (LoS) and non-LoS mmWave massive MIMO channel models show that our algorithms improve channel estimation accuracy with 1-bit measurements in a computationally-efficient manner. 
    more » « less
  5. We study the uplink performance of a massive multiple-input multiple-output (MIMO) system with one-bit analog to digital converters (ADCs) in the presence of a disruptive jammer. We propose spatial Sigma-Delta (ΣΔ) quantization with an interference cancellation feedback beamformer (FBB ΣΔ) to mitigate the adverse impact of the jammer on the system performance. Then we analyze the performance of this architecture by adopting an appropriate linear model and present a recursive algorithm to calculate the power of the quantization noise. Simulation results show that the spatial FBB ΣΔ architecture can achieve the same symbol error rate as in systems with high-resolution ADCs. 
    more » « less