We consider channel estimation for an uplink massive multiple input multiple output (MIMO) system where the base station (BS) uses a first-order spatial Sigma-Delta (Σ△) analog-to-digital converter (ADC) array. The Σ△ array consists of closely spaced sensors which oversample the received signal and provide a coarsely quantized (1-bit) output. We develop a linear minimum mean squared error (LMMSE) estimator based on the Bussgang decomposition that reformulates the nonlinear quantizer model using an equivalent linear model plus quantization noise. The performance of the proposed Σ△ LMMSE estimator is compared via simulation to channel estimation using standard 1-bit quantization and also infinite resolution ADCs. 
                        more » 
                        « less   
                    
                            
                            Variational Bayes for Joint Channel Estimation and Data Detection in Few-Bit Massive MIMO Systems
                        
                    
    
            Massive multiple-input multiple-output (MIMO) communications using low-resolution analog-to-digital converters (ADCs) is a promising technology for providing high spectral and energy efficiency with affordable hardware cost and power consumption. However, the use of low-resolution ADCs requires special signal processing methods for channel estimation and data detection since the resulting system is severely non-linear. This paper proposes joint channel estimation and data detection methods for massive MIMO systems with low-resolution ADCs based on the variational Bayes (VB) inference framework. We first derive matched-filter quantized VB (MF-QVB) and linear minimum mean-squared error quantized VB (LMMSE-QVB) detection methods assuming the channel state information (CSI) is available. Then we extend these methods to the joint channel estimation and data detection (JED) problem and propose two methods we refer to as MF-QVB-JED and LMMSE-QVB-JED. Unlike conventional VB-based detection methods that assume knowledge of the second-order statistics of the additive noise, we propose to float the elements of the noise covariance matrix as unknown random variables that are used to account for both the noise and the residual inter-user interference. We also present practical aspects of the QVB framework to improve its implementation stability. Finally, we show via numerical results that the proposed VB-based methods provide robust performance and also significantly outperform existing methods. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10527742
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Signal Processing
- ISSN:
- 1053-587X
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Spatial ΣΔ sampling has recently been proposed to improve the performance of massive MIMO systems with low-resolution quantization for cases where the users are confined to a certain angular sector, or the array is spatially oversampled. We derive a linear minimum mean squared error (LMMSE) channel estimator for the ΣΔ array based on an element-wise Bussgang decomposition that reformulates the nonlinear quantizer operation using an equivalent linear model plus quantization noise. Both the case of one- and two-bit quantization is considered. We then evaluate the achievable rate of the ΣΔ system assuming that a linear receiver based on the LMMSE channel estimate is used to decode the data. Our numerical results demonstrate that ΣΔ architecture is able to achieve superior channel estimates and sum spectral efficiency compared to conventional low-resolution quantized massive MIMO systems.more » « less
- 
            null (Ed.)Low-resolution analog-to-digital converters (ADCs) have been considered as a practical and promising solution for reducing cost and power consumption in massive Multiple-Input-Multiple-Output (MIMO) systems. Unfortunately, low-resolution ADCs significantly distort the received signals, and thus make data detection much more challenging. In this paper, we develop a new deep neural network (DNN) framework for efficient and low-complexity data detection in low-resolution massive MIMO systems. Based on reformulated maximum likelihood detection problems, we propose two model-driven DNN-based detectors, namely OBMNet and FBMNet, for one-bit and few-bit massive MIMO systems, respectively. The proposed OBMNet and FBMNet detectors have unique and simple structures designed for low-resolution MIMO receivers and thus can be efficiently trained and implemented. Numerical results also show that OBMNet and FBMNet significantly outperform existing detection methods.more » « less
- 
            The uplink performance of a mixed analog-to-digital converter (ADC) massive multiple-input multiple-output (MIMO) architecture with a space-constrained array at the base station (BS) is analyzed. We investigate the effect of spatial correlation and mutual coupling on the spectral efficiency (SE) of the system. First, we analyze to what extent adding a small number of high-resolution ADCs can impact the channel estimation accuracy. Then, we derive a closed-form approximation for the SE. Our analysis demonstrates how a space constraint on a uniform linear array (ULA) can affect the design of a massive MIMO system with low-resolution ADCs. It is shown that by equally spacing a small number of high-resolution ADCs over the array, one can dramatically reduce the performance gap between a system with all low-resolution and all high-resolution ADCs.more » « less
- 
            All-digital massive multiuser (MU) multiple-input multiple-output (MIMO) at millimeter-wave (mmWave) frequencies is a promising technology for next-generation wireless systems. Low-resolution analog-to-digital converters (ADCs) can be utilized to reduce the power consumption of all-digital basestation (BS) designs. However, simultaneously transmitting user equipments (UEs) with vastly different BS-side receive powers either drown weak UEs in quantization noise or saturate the ADCs. To address this issue, we propose high dynamic range (HDR) MIMO, a new paradigm that enables simultaneous reception of strong and weak UEs with low-resolution ADCs. HDR MIMO combines an adaptive analog spatial transform with digital equalization: The spatial transform focuses strong UEs on a subset of ADCs in order to mitigate quantization and saturation artifacts; digital equalization is then used for data detection. We demonstrate the efficacy of HDR MIMO in a massive MU-MIMO mmWave scenario that uses Householder reflections as spatial transform.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    