skip to main content


Title: Comparative cranial osteology of European gekkotans (Reptilia, Squamata)
Comparative osteology of European lizards, and of European geckos in particular, is poorly known, resulting in problems when trying to determine to species isolated bones found as fossils or as remains of prey in scats or pellets. In order to partly solve this issue, we here present a detailed comparative analysis of the cranial bones of the four most broadly distributed species of European gekkotans: Euleptes europaea, Hemidactylus turcicus, Mediodactylus kotschyi and Tarentola mauritanica. The skulls of these species display both a set of features that are typical for geckos in general and unique features that can be employed to identify isolated bones of all considered species. Diagnostic differences are found in almost every bone (except the squamosal, epipterygoid and stapes), leading to the creation of a detailed diagnostic key. The dentition also displays some interspecific differences, even though all four species share a similar general tooth morphology, with pleurodont teeth provided with two parallel cutting edges separated by a groove-like space. Such a dentition is consistent with an arthropod-based diet.  more » « less
Award ID(s):
1657656
NSF-PAR ID:
10092688
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Zoological journal of the Linnean Society
Volume:
184
Issue:
3
ISSN:
0024-4082
Page Range / eLocation ID:
857 - 895
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gekkota (geckos and pygopodids) is a clade thought to have originated in the Early Cretaceous and that today exhibits one of the most remarkable scansorial capabilities among lizards. Little information is available regarding the origin of scansoriality, which subsequently became widespread and diverse in terms of ecomorphology in this clade. An undescribed amber fossil (MCZ R–190835) from mid-Cretaceous outcrops of the north of Myanmar dated at 99 Ma, previously assigned to stem Gekkota, preserves carpal, metacarpal and phalangeal bones, as well as supplementary climbing structures, such as adhesive pads and paraphalangeal elements. This fossil documents the presence of highly specialized adaptive structures. Here, we analyze in detail the manus of the putative stem Gekkota. We use morphological comparisons in the context of extant squamates, to produce a detailed descriptive analysis and a linear discriminant analysis (LDA) based on 32 skeletal variables of the manus. The comparative sample includes members of 15 extant squamate families (Agamidae, Dactyloidae, Iguanidae, Leiosauridae, Liolaemidae, Polychrotidae, Tropiduridae, Diplodactylidae, Eublepharidae, Gekkonidae, Phyllodactylidae, Sphaerodactylidae, Gymnophthalmidae, Teiidae, and Scincidae). Although the fossil manus is qualitatively more similar to that of members of Gekkota, the LDA analysis places it in a morphozone shared by Gekkota and Scincomorpha. This result is particularly interesting, given that despite the presence of paraphalangeal structures had only been reported in extant geckos of the families Gekkonidae and Phyllodactylidae, the usage of an adhesive subdigital system to climb originated independently in Gekkota, Scincidae, and Dactyloidae. 
    more » « less
  2. Abstract How developmental modifications produce key innovations, which subsequently allow for rapid diversification of a clade into new adaptive zones, has received much attention. However, few studies have used a robust comparative framework to investigate the influence of evolutionary and developmental constraints on the origin of key innovations, such as the adhesive toe pad of lizards. Adhesive toe pads evolved independently at least 16 times in lizards, allowing us to examine whether the patterns observed are general evolutionary phenomena or unique, lineage-specific events. We performed a high-resolution comparison of plantar scale development in 14 lizard species in Anolis and geckos, encompassing five independent origins of toe pads (one in Anolis, four in geckos). Despite substantial evolutionary divergence between Anolis and geckos, we find that these clades have undergone similar developmental modifications to generate their adhesive toe pads. Relative to the ancestral plantar scale development, in which scale ridges form synchronously along the digit, both padded geckos and Anolis exhibit scansor formation in a distal-to-proximal direction. Both clades have undergone developmental repatterning and, following their origin, modifications in toe pad morphology occurred through relatively minor developmental modifications, suggesting that developmental constraints governed the diversification of the adhesive toe pad in lizards. 
    more » « less
  3. After the Cretaceous-Paleogene (K-Pg) mass extinction mammals, which originated during the Mesozoic, managed to survive and thrive. However, the tempo and mode of evolution for eutherians (placentals and close relatives) after the extinction are still unclear. An ideal group to investigate the post KPg evolution of mammals is the taeniodonts, as they are among the few taxa to purportedly cross the boundary. They then underwent a radiation in the early Paleogene and are defined primarily by their unusual dentition which is suited to chew an abrasive and tough diet. Ten genera of taeniodonts are currently recognized and are commonly arranged into two families. The Conoryctidae is usually considered to have a more generalized body plan while Stylinodontidae possess relatively extreme digging adaptations and more highly derived dentitions with enlarged canines. We conducted a phylogenetic analysis by applying parsimony and Bayesian techniques to a dataset of characters gathered from extensive observation of new specimens. We found limited support for the conoryctid-stylinodontid division and the genera Conoryctes and Onychodectes are placed as key basal taxa outside the clade of the more robust derived taxa (Wortmania, Ectoganus, Psittacotherium, Stylinodon). We then assessed postcranial bones to determine functional modes for taeniodonts and to test changes across phylogeny. Qualitatively, most taeniodonts, including Onychodectes, possess indicators of digging, i.e., a well-developed deltopectoral crest and broad distal end of the humerus for increasing flexion, pronation and supination, a long olecranon process of the ulna and enlarged manual unguals. Then we conducted quantitative multivariate analyses (linear discriminant analysis), using 9 forelimb linear measurements and 29 tarsal ones, comparing taeniodonts to a suite of extant mammals with known locomotor mode and other Paleogene taxa. Our results suggest Onychodectes to be terrestrial/semifossorial and comparable with the numbat (Myrmecobius fasciatus). Ectoganus and Stylinodon are semi-fossorial and fall out near the gopher, Pappogeomys merriami and the aardvark (Orcyteropus afer). Therefore, our study indicates that digging behaviors are ancestral for taeniodonts, and suggest that burrowing may have been integral to their survival across the KPg boundary and their subsequent radiation. Grant Information: European Research Council Starting Grant (ERC StG 2017, 756226, PalM), National Science Foundation (EAR- 1325544, 1654952, DEB-1654952, 1654949) 
    more » « less
  4. Abstract Objectives

    Most research in human dental age estimation has focused on point estimates of age, and most research on dental development theories has focused on morphology or eruption. Correlations between developing teeth using ordinal staging have received less attention. The effect of demographic variables on these correlations is unknown. I tested the effect of reference sample demographic variables on the residual correlation matrix using the lens of cooperative genetic interaction (CGI).

    Materials and Methods

    The sample consisted of Moorrees et al.,Journal of Dental Research, 1963, 42, 1490–1502, scores of left mandibular permanent teeth from panoramic radiographs of 880 London children 3–22.99 years of age stratified by year of age, sex, and Bangladeshi or European ancestry. A multivariate cumulative probit model was fit to each sex/ancestry group (n = 220), each sex or ancestry (n = 440), and all individuals (n = 880). Residual correlation matrices from nine reference sample configurations were compared using Bartlett's tests of between‐sample difference matrices against the identity matrix, hierarchical cluster analysis, and dendrogram cophenetic correlations.

    Results

    Bartlett's test results were inconclusive. Cluster analysis showed clustering by tooth class, position within class, and developmental timing. Clustering patterns and dendrogram correlations showed similarity by sex but not ancestry.

    Discussion

    Expectations of CGI were supported for developmental staging. This supports using CGI as a model for explaining patterns of variation within the dentition. Sex was found to produce consistent patterns of dental correlations, whereas ancestry did not. Clustering by timing of development supports phenotypic plasticity in the dentition and suggests shared environment over genetic ancestry to explain population differences.

     
    more » « less
  5. Abstract

    The nearly complete cranium DAN5/P1 was found at Gona (Afar, Ethiopia), dated to 1.5–1.6 Ma, and assigned to the speciesHomo erectus. Its size is, nonetheless, particularly small for the known range of variation of this taxon, and the cranial capacity has been estimated as 598 cc. In this study, we analyzed a reconstruction of its endocranial cast, to investigate its paleoneurological features. The main anatomical traits of the endocast were described, and its morphology was compared with other fossil and modern human samples. The endocast shows most of the traits associated with less encephalized human taxa, like narrow frontal lobes and a simple meningeal vascular network with posterior parietal branches. The parietal region is relatively tall and rounded, although not especially large. Based on our set of measures, the general endocranial proportions are within the range of fossils included in the speciesHomo habilisor in the genusAustralopithecus. Similarities with the genusHomoinclude a more posterior position of the frontal lobe relative to the cranial bones, and the general endocranial length and width when size is taken into account. This new specimen extends the known brain size variability ofHomo ergaster/erectus, while suggesting that differences in gross brain proportions among early human species, or even between early humans and australopiths, were absent or subtle.

     
    more » « less