skip to main content


Title: Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A
Neutrinos interact only very weakly with matter, but giant detectors have succeeded in detecting small numbers of astrophysical neutrinos. Aside from a diffuse background, only two individual sources have been identified: the Sun and a nearby supernova in 1987. A multiteam collaboration detected a high-energy neutrino event whose arrival direction was consistent with a known blazar—a type of quasar with a relativistic jet oriented directly along our line of sight. The blazar, TXS 0506+056, was found to be undergoing a gamma-ray flare, prompting an extensive multiwavelength campaign. Motivated by this discovery, the IceCube collaboration examined lower-energy neutrinos detected over the previous several years, finding an excess emission at the location of the blazar. Thus, blazars are a source of astrophysical neutrinos.  more » « less
Award ID(s):
1708146 1714479 1707505 1806408 1806854 1707551 1707432 1912708
NSF-PAR ID:
10092740
Author(s) / Creator(s):
Date Published:
Journal Name:
Science
ISSN:
0036-8075
Page Range / eLocation ID:
eaat1378
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The majority of astrophysical neutrinos have undetermined origins. The IceCube Neutrino Observatory has observed astrophysical neutrinos but has not yet identified their sources. Blazars are promising source candidates, but previous searches for neutrino emission from populations of blazars detected in ≳GeV gamma rays have not observed any significant neutrino excess. Recent findings in multimessenger astronomy indicate that high-energy photons, coproduced with high-energy neutrinos, are likely to be absorbed and reemitted at lower energies. Thus, lower-energy photons may be better indicators of TeV–PeV neutrino production. This paper presents the first time-integrated stacking search for astrophysical neutrino emission from MeV-detected blazars in the first Fermi Large Area Telescope low energy (1FLE) catalog using ten years of IceCube muon–neutrino data. The results of this analysis are found to be consistent with a background-only hypothesis. Assuming an E −2 neutrino spectrum and proportionality between the blazars MeV gamma-ray fluxes and TeV–PeV neutrino flux, the upper limit on the 1FLE blazar energy-scaled neutrino flux is determined to be 1.64 × 10 −12 TeV cm −2 s −1 at 90% confidence level. This upper limit is approximately 1% of IceCube’s diffuse muon–neutrino flux measurement. 
    more » « less
  2. ABSTRACT

    We report on the search for optical counterparts to IceCube neutrino alerts released between 2016 April and 2021 August with the All-Sky Automated Survey for SuperNovae (ASAS-SN). Despite the discovery of a diffuse astrophysical high-energy neutrino flux in 2013, the source of those neutrinos remains largely unknown. Since 2016, IceCube has published likely astrophysical neutrinos as public real-time alerts. Through a combination of normal survey and triggered target-of-opportunity observations, ASAS-SN obtained images within 1 h of the neutrino detection for 20 per cent (11) of all observable IceCube alerts and within one day for another 57 per cent (32). For all observable alerts, we obtained images within at least two weeks from the neutrino alert. ASAS-SN provides the only optical follow-up for about 17 per cent of IceCube’s neutrino alerts. We recover the two previously claimed counterparts to neutrino alerts, the flaring-blazar TXS 0506 + 056 and the tidal disruption event AT2019dsg. We investigate the light curves of previously detected transients in the alert footprints, but do not identify any further candidate neutrino sources. We also analysed the optical light curves of Fermi 4FGL sources coincident with high-energy neutrino alerts, but do not identify any contemporaneous flaring activity. Finally, we derive constraints on the luminosity functions of neutrino sources for a range of assumed evolution models.

     
    more » « less
  3. Abstract

    IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of ≥0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events’ error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3σ, which confirms previous IceCube studies. When correcting for 122 test positions, the globalp-value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 × 10−15(TeV cm2s)−1at 90% confidence assuming anE−2spectrum. This corresponds to 4.5% of IceCube’s astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission.

     
    more » « less
  4. Several tentative associations between high-energy neutrinos and astrophysical sources have been recently reported, but a conclusive identification of these potential neutrino emitters remains challenging. We explore the use of Monte Carlo simulations of source populations to gain deeper insight into the physical implications of proposed individual source–neutrino associations. In particular, we focus on the IC170922A–TXS 0506+056 observation. Assuming a null model, we find a 7.6% chance of mistakenly identifying coincidences between γ -ray flares from blazars and neutrino alerts in 10-year surveys. We confirm that a blazar–neutrino connection based on the γ -ray flux is required to find a low chance coincidence probability and, therefore, a significant IC170922A–TXS 0506+056 association. We then assume this blazar–neutrino connection for the whole population and find that the ratio of neutrino to γ -ray fluxes must be ≲10 −2 in order not to overproduce the total number of neutrino alerts seen by IceCube. For the IC170922A–TXS 0506+056 association to make sense, we must either accept this low flux ratio or suppose that only some rare sub-population of blazars is capable of high-energy neutrino production. For example, if we consider neutrino production only in blazar flares, we expect the flux ratio of between 10 −3 and 10 −1 to be consistent with a single coincident observation of a neutrino alert and flaring γ -ray blazar. These constraints should be interpreted in the context of the likelihood models used to find the IC170922A–TXS 0506+056 association, which assumes a fixed power-law neutrino spectrum of E −2.13 for all blazars. 
    more » « less
  5. Abstract

    The IceCube Neutrino Observatory is a cubic kilometer neutrino detector located at the geographic South Pole designed to detect high-energy astrophysical neutrinos. To thoroughly understand the detected neutrinos and their properties, the detector response to signal and background has to be modeled using Monte Carlo techniques. An integral part of these studies are the optical properties of the ice the observatory is built into. The simulated propagation of individual photons from particles produced by neutrino interactions in the ice can be greatly accelerated using graphics processing units (GPUs). In this paper, we (a collaboration between NVIDIA and IceCube) reduced the propagation time per photon by a factor of up to 3 on the same GPU. We achieved this by porting the OpenCL parts of the program to CUDA and optimizing the performance. This involved careful analysis and multiple changes to the algorithm. We also ported the code to NVIDIA OptiX to handle the collision detection. The hand-tuned CUDA algorithm turned out to be faster than OptiX. It exploits detector geometry and only a small fraction of photons ever travel close to one of the detectors.

     
    more » « less