In this paper, we investigate the existence of Sierpi´nski numbers and Riesel numbers as binomial coefficients. We show that for any odd positive integer r, there exist infinitely many Sierpi´nski numbers and Riesel numbers of the form kCr. Let S(x) be the number of positive integers r satisfying 1 ≤ r ≤ x for which kCr is a Sierpi´nski number for infinitely many k. We further show that the value S(x)/x gets arbitrarily close to 1 as x tends to infinity. Generalizations to base a-Sierpi´nski numbers and base a-Riesel numbers are also considered. In particular, we prove that there exist infinitely many positive integers r such that kCr is simultaneously a base a-Sierpi´nski and base a-Riesel number for infinitely many k.
more »
« less
When Sets Can and Cannot Have MSTD Subsets
A finite set of integers A is a sum-dominant (also called a More Sums Than Differences or MSTD) set if |A+A| > |A−A|. While almost all subsets of {0, . . . , n} are not sum-dominant, interestingly a small positive percentage are. We explore sufficient conditions on infinite sets of positive integers such that there are either no sum-dominant subsets, at most finitely many sum-dominant subsets, or infinitely many sum-dominant subsets. In particular, we prove no subset of the Fibonacci numbers is a sum-dominant set, establish conditions such that solutions to a recurrence relation have only finitely many sum-dominant subsets, and show there are infinitely many sum-dominant subsets of the primes.
more »
« less
- PAR ID:
- 10092873
- Date Published:
- Journal Name:
- Journal of integer sequences
- Volume:
- 21
- ISSN:
- 1530-7638
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract Let $$K$$ be an algebraically closed field of prime characteristic $$p$$ , let $$X$$ be a semiabelian variety defined over a finite subfield of $$K$$ , let $$\unicode[STIX]{x1D6F7}:X\longrightarrow X$$ be a regular self-map defined over $$K$$ , let $$V\subset X$$ be a subvariety defined over $$K$$ , and let $$\unicode[STIX]{x1D6FC}\in X(K)$$ . The dynamical Mordell–Lang conjecture in characteristic $$p$$ predicts that the set $$S=\{n\in \mathbb{N}:\unicode[STIX]{x1D6F7}^{n}(\unicode[STIX]{x1D6FC})\in V\}$$ is a union of finitely many arithmetic progressions, along with finitely many $$p$$ -sets, which are sets of the form $$\{\sum _{i=1}^{m}c_{i}p^{k_{i}n_{i}}:n_{i}\in \mathbb{N}\}$$ for some $$m\in \mathbb{N}$$ , some rational numbers $$c_{i}$$ and some non-negative integers $$k_{i}$$ . We prove that this conjecture is equivalent with some difficult diophantine problem in characteristic 0. In the case $$X$$ is an algebraic torus, we can prove the conjecture in two cases: either when $$\dim (V)\leqslant 2$$ , or when no iterate of $$\unicode[STIX]{x1D6F7}$$ is a group endomorphism which induces the action of a power of the Frobenius on a positive dimensional algebraic subgroup of $$X$$ . We end by proving that Vojta’s conjecture implies the dynamical Mordell–Lang conjecture for tori with no restriction.more » « less
-
null (Ed.)We prove the following result: there is a family R = ⟨ R 0 , R 1 , … ⟩ of subsets of ω such that for every stable coloring c : [ ω ] 2 → k hyperarithmetical in R and every finite collection of Turing functionals, there is an infinite homogeneous set H for c such that none of the finitely many functionals map R ⊕ H to an infinite cohesive set for R. This provides a partial answer to a question in computable combinatorics, whether COH is omnisciently computably reducible to SRT 2 2 .more » « less
-
Holmsen, Kynčl and Valculescu recently conjectured that if a finite set $$X$$ with $$\ell n$$ points in $$\mathbb{R}^{d}$$ that is colored by $$m$$ different colors can be partitioned into $$n$$ subsets of $$\ell$$ points each, such that each subset contains points of at least $$d$$ different colors, then there exists such a partition of $$X$$ with the additional property that the convex hulls of the $$n$$ subsets are pairwise disjoint. We prove a continuous analogue of this conjecture, generalized so that each subset contains points of at least $$c$$ different colors, where we also allow $$c$$ to be greater than $$d$$ . Furthermore, we give lower bounds on the fraction of the points each of the subsets contains from $$c$$ different colors. For example, when $$n\geqslant 2$$ , $$d\geqslant 2$$ , $$c\geqslant d$$ with $$m\geqslant n(c-d)+d$$ are integers, and $$\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{m}$$ are $$m$$ positive finite absolutely continuous measures on $$\mathbb{R}^{d}$$ , we prove that there exists a partition of $$\mathbb{R}^{d}$$ into $$n$$ convex pieces which equiparts the measures $$\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{d-1}$$ , and in addition every piece of the partition has positive measure with respect to at least $$c$$ of the measures $$\unicode[STIX]{x1D707}_{1},\ldots ,\unicode[STIX]{x1D707}_{m}$$ .more » « less
-
This paper is a sequel to [Monatsh. Math. 194 (2021) 523–554] in which results of that paper are generalized so that they hold in the setting of inhomogeneous Diophantine approximation. Given any integers [Formula: see text] and [Formula: see text], any [Formula: see text], and any homogeneous function [Formula: see text] that satisfies a certain nonsingularity assumption, we obtain a biconditional criterion on the approximating function [Formula: see text] for a generic element [Formula: see text] in the [Formula: see text]-orbit of [Formula: see text] to be (respectively, not to be) [Formula: see text]-approximable at [Formula: see text]: that is, for there to exist infinitely many (respectively, only finitely many) [Formula: see text] such that [Formula: see text] for each [Formula: see text]. In this setting, we also obtain a sufficient condition for uniform approximation. We also consider some examples of [Formula: see text] that do not satisfy our nonsingularity assumptions and prove similar results for these examples. Moreover, one can replace [Formula: see text] above by any closed subgroup of [Formula: see text] that satisfies certain integrability axioms (being of Siegel and Rogers type) introduced by the authors in the aforementioned previous paper.more » « less
An official website of the United States government

