The vibrational structure and binding motifs of vanadium cation-ethane clusters, V(+)(C2H6)n, for n = 1 – 4 are probed using infrared photodissociation spectroscopy in the C-H stretching region (2550 – 3100 cm-1). Comparison of spectra to scaled harmonic frequency spectra obtained using density functional theory suggest that ethane exhibits two primary binding motifs when interacting with the vanadium cation, an end-on 𝜂2 configuration and a side-on configuration. The lower-energy side-on configuration predominates in smaller clusters, but the end-on configuration becomes important for larger clusters as it helps to maintain a roughly square planar geometry about the central vanadium. Proximate C-H bonds exhibit elongation and large red-shifts when compared to bare ethane, particularly in the case of the side-on isomer, which are underestimated by scaled harmonic frequency calculations, demonstrating initial effects of C-H bond activation.
more »
« less
Quantum-vibrational-state-selected Integral Cross Sections and Product Branching Ratios for the Ion-molecule Reactions of N 2 + ( X 2 Σ g + ; v + = 0–2) + H 2 O and H 2 O + ( X 2 B 1 : v 1 + v 2 + v 3 + = 000 and 100) + N 2 in the Collision Energy Range of 0.04–10.00 eV
- Award ID(s):
- 1763319
- PAR ID:
- 10093011
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 861
- Issue:
- 1
- ISSN:
- 1538-4357
- Page Range / eLocation ID:
- 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation