skip to main content


Title: Security Oriented Analog Circuit Design Using Satisfiability Modulo Theory Based Search Space Exploration
A technique to enhance the security of analog circuits using Satisfiability Modulo Theory (SMT) based design space exploration is described. The analog satisfiability (aSAT) technique takes as inputs generic circuit equations and performance constraints and, by exhaustively exploring the design space, outputs transistor sizes that satisfy the given constraints. The aSAT methodology is applied to parameter biasing obfuscation, where the width and length of a transistor are obfuscated to mask circuit properties. The proposed methodology was used in the design of a differential amplifier and an operational amplifier, where the widths and lengths determined through aSAT analysis were shown to meet the target circuit specifications. For the operational amplifier, transistor dimensions determined through aSAT analysis for a set of performance constraints were characterized and were found to meet the performance targets, however, there was a 7 MHz reduction in the gain bandwidth product. The simulated results indicate that the developed design methodology achieves a fast and accurate determination of transistor sizes for target specifications.  more » « less
Award ID(s):
1751032
NSF-PAR ID:
10093013
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Government Microcircuit Applications & Critical Technology Conference
Page Range / eLocation ID:
770-774
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, an approach is described for enhancing the security of analog circuits using Satisfiability Modulo theory (SMT) based design space exploration. The technique takes as inputs generic circuit equations and performance constraints and, by exhaustively exploring the design space, outputs transistor sizes that satisfy the given constraints. The analog satisfiability (aSAT) methodology is applied to parameter biasing obfuscation, where the width of a transistor is obfuscated to mask circuit properties, while also limiting the number of keys that produce the target performance requirements. The proposed methodology is used in the design of a differential amplifier and a two stage amplifier. The widths determined through aSAT analysis are shown to meet the gain, phase margin, and power consumption requirements for both a differential amplifier and a two-stage amplifier. However, a 7 MHz offset in the gain-bandwidth of the two-stage amplifier is observed from the target value of 30 MHz. The total gain of the two stage amplifier is masked with a 24 bit encryption key that results in a probability of 5.96x10-08 to determine the correct key. The simulated results indicate that the proposed analog design methodology quickly and accurately determines transistor sizes for target specifications, while also accounting for obfuscation of analog circuit parameters. 
    more » « less
  2. null (Ed.)
    A novel simulation-based framework that applies classification with adaptive labeling thresholds (CALT) is developed that auto-generates the component sizes of an analog integrated circuit. Classifiers are applied to predict whether the target specifications are satisfied. To address the lack of data points with positive labels due to the large dimensionality of the parameter space, the labeling threshold is adaptively set to a certain percentile of the distribution of a given circuit performance metric in the dataset. Random forest classifiers are executed for surrogate prediction modeling that provide a ranking of the design parameters. For each iteration of the simulation loop, optimization is utilized to determine new query points. CALT is applied to the design of a low noise amplifier (LNA) in a 65 nm technology. Qualified design solutions are generated for two sets of specifications with an average execution of 4 and 17 iterations of the optimization loop, which require an average of 1287 and 2190 simulation samples, and an average execution time of 5.4 hours and 23.2 hours, respectively. CALT is a specification-driven design framework to automate the sizing of the components (transistors, capacitors, inductors, etc.) of an analog circuit. CALT generates interpretable models and achieves high sample efficiency without requiring the use of prior circuit models. 
    more » « less
  3. This work proposes a novel design automation (DA) technique that uses a multifaceted approach combining Multivariate Regression with Geometric Programming (GP) to design analog circuits. Previous DA methods employing GP have typically used analytical derivations of the various design equations representing an analog circuit. The proposed DA method eliminates the need for analytical derivations by using simulation data and multivariate regression to generate statistical models combined with GP to solve these statistical expressions with respect to optimum circuit design parameters. This presented statistical GP method has been applied to successfully design a five-transistor two-stage operational amplifier and a folded cascode amplifier in a TSMC 65nm CMOS technology. The presented statistical GP DA results are comparable to the design results obtained from both analytical GP 
    more » « less
  4. Despite tremendous efforts in analog layout automation, little adoption has been demonstrated in practical design flows. Traditional analog layout synthesis tools use various heuristic constraints to prune the design space to ensure post layout performance. However, these approaches provide limited guarantee and poor generalizability due to a lack of model mapping layout properties to circuit performance. In this paper, we attempt to shorten the gap in post layout performance modeling for analog circuits with a quantitative statistical approach. We leverage a state-of-the-art automatic analog layout tool and industry-level simulator to generate labeled training data in an automated manner. We propose a 3D convolutional neural network (CNN) model to predict the relative placement quality using well-crafted placement features. To achieve data-efficiency for practical usage, we further propose a transfer learning scheme that greatly reduces the amount of data needed. Our model would enable early pruning and efficient design explorations for practical layout design flows. Experimental results demonstrate the effectiveness and generalizability of our method across different operational transconductance amplifier (OTA) designs. 
    more » « less
  5. This paper presents a design approach for the modeling and simulation of ultra-low power (ULP) analog computing machine learning (ML) circuits for seizure detection using EEG signals in wearable health monitoring applications. In this paper, we describe a new analog system modeling and simulation technique to associate power consumption, noise, linearity, and other critical performance parameters of analog circuits with the classification accuracy of a given ML network, which allows to realize a power and performance optimized analog ML hardware implementation based on diverse application-specific needs. We carried out circuit simulations to obtain non-idealities, which are then mathematically modeled for an accurate mapping. We have modeled noise, non-linearity, resolution, and process variations such that the model can accurately obtain the classification accuracy of the analog computing based seizure detection system. Noise has been modeled as an input-referred white noise that can be directly added at the input. Device process and temperature variations were modeled as random fluctuations in circuit parameters such as gain and cut-off frequency. Nonlinearity was mathematically modeled as a power series. The combined system level model was then simulated for classification accuracy assessments. The design approach helps to optimize power and area during the development of tailored analog circuits for ML networks with the ability to potentially trade power and performance goals while still ensuring the required classification accuracy. The simulation technique also enables to determine target specifications for each circuit block in the analog computing hardware. This is achieved by developing the ML hardware model, and investigating the effect of circuit nonidealities on classification accuracy. Simulation of an analog computing EEG seizure detection block shows a classification accuracy of 91%. The proposed modeling approach will significantly reduce design time and complexity of large analog computing systems. Two feature extraction approaches are also compared for an analog computing architecture. 
    more » « less