skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards Decrypting the Art of Analog Layout: Placement Quality Prediction via Transfer Learning
Despite tremendous efforts in analog layout automation, little adoption has been demonstrated in practical design flows. Traditional analog layout synthesis tools use various heuristic constraints to prune the design space to ensure post layout performance. However, these approaches provide limited guarantee and poor generalizability due to a lack of model mapping layout properties to circuit performance. In this paper, we attempt to shorten the gap in post layout performance modeling for analog circuits with a quantitative statistical approach. We leverage a state-of-the-art automatic analog layout tool and industry-level simulator to generate labeled training data in an automated manner. We propose a 3D convolutional neural network (CNN) model to predict the relative placement quality using well-crafted placement features. To achieve data-efficiency for practical usage, we further propose a transfer learning scheme that greatly reduces the amount of data needed. Our model would enable early pruning and efficient design explorations for practical layout design flows. Experimental results demonstrate the effectiveness and generalizability of our method across different operational transconductance amplifier (OTA) designs.  more » « less
Award ID(s):
1704758
PAR ID:
10192508
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)
Page Range / eLocation ID:
496 to 501
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite tremendous advancement of digital IC design automation tools over the last few decades, analog IC layout is still heavily manual which is very tedious and error-prone. This paper will first review the history, challenges, and current status of analog IC layout automation. Then, we will present MAGICAL, a human-intelligence inspired, fully-automated analog IC layout system currently being developed under the DARPA IDEA program. It starts from an unannotated netlist, performs automatic layout constraint extraction and device generation, then performs placement and post-placement optimization, followed by routing to obtain the final GDSII layout. Various analytical, heuristic, and machine learning algorithms will be discussed. MAGICAL has obtained promising preliminary results. We will conclude the paper with further discussions on challenges and future directions for fully-automated analog IC layout. 
    more » « less
  2. Hardware Description Language (HDL) is a common entry point for designing digital circuits. Differences in HDL coding styles and design choices may lead to considerably different design quality and performance-power tradeoff. In general, the impact of HDL coding is not clear until logic synthesis or even layout is completed. However, running synthesis merely as a feedback for HDL code is computationally not economical especially in early design phases when the code needs to be frequently modified. Furthermore, in late stages of design convergence burdened with high-impact engineering change orders (ECO’s), design iterations become prohibitively expensive. To this end, we propose a machine learning approach to Verilog-based Register-Transfer Level (RTL) design assessment without going through the synthesis process. It would allow designers to quickly evaluate the performance-power tradeoff among different options of RTL designs. Experimental results show that our proposed technique achieves an average of 95% prediction accuracy in terms of post-placement analysis, and is 6 orders of magnitude faster than evaluation by running logic synthesis and placement. 
    more » « less
  3. Hardware Description Language (HDL) is a common entry point for designing digital circuits. Differences in HDL coding styles and design choices may lead to considerably different design quality and performance-power tradeoff. In general, the impact of HDL coding is not clear until logic synthesis or even layout is completed. However, running synthesis merely as a feedback for HDL code is computationally not economical especially in early design phases when the code needs to be frequently modified. Furthermore, in late stages of design convergence burdened with high-impact engineering change orders (ECO’s), design iterations become prohibitively expensive. To this end, we propose a machine learning approach to Verilog-based Register-Transfer Level (RTL) design assessment without going through the synthesis process. It would allow designers to quickly evaluate the performance-power tradeoff among different options of RTL designs. Experimental results show that our proposed technique achieves an average of 95% prediction accuracy in terms of post-placement analysis, and is 6 orders of magnitude faster than evaluation by running logic synthesis and placement. 
    more » « less
  4. Analog integrated circuit (IC) placement is a heavily manual and time-consuming task that has a significant impact on chip quality. Several recent studies apply machine learning (ML) techniques to directly predict the impact of placement on circuit performance or even guide the placement process. However, the significant diversity in analog design topologies can lead to different impacts on performance metrics (e.g., common-mode rejection ratio (CMRR) or offset voltage). Thus, it is unlikely that the same ML model structure will achieve the best performance for all designs and metrics. In addition, customizing ML models for different designs require more tremendous engineering efforts and longer development cycles. In this work, we leverage Neural Architecture Search (NAS) to automatically develop customized neural architectures for different analog circuit designs and metrics. Our proposed NAS methodology supports an unconstrained DAG-based search space containing a wide range of ML operations and topological connections. Our search strategy can efficiently explore this flexible search space and provide every design with the best-customized model to boost the model performance. We make unprejudiced comparisons with the claimed performance of the previous representative work on exactly the same dataset. After fully automated development within only 0.5 days, generated models give 3.61% superior accuracy than the prior art. 
    more » « less
  5. Vector-matrix multiplication (VMM) is a core operation in many signal and data processing algorithms. Previous work showed that analog multipliers based on nonvolatile memories have superior energy efficiency as compared to digital counterparts at low-to-medium computing precision. In this paper, we propose extremely energy efficient analog mode VMM circuit with digital input/output interface and configurable precision. Similar to some previous work, the computation is performed by gate-coupled circuit utilizing embedded floating gate (FG) memories. The main novelty of our approach is an ultra-low power sensing circuitry, which is designed based on translinear Gilbert cell in topological combination with a floating resistor and a low-gain amplifier. Additionally, the digital-to-analog input conversion is merged with VMM, while current-mode algorithmic analog-to-digital circuit is employed at the circuit backend. Such implementations of conversion and sensing allow for circuit operation entirely in a current domain, resulting in high performance and energy efficiency. For example, post-layout simulation results for 400×400 5-bit VMM circuit designed in 55 nm process with embedded NOR flash memory, show up to 400 MHz operation, 1.68 POps/J energy efficiency, and 39.45 TOps/mm2 computing throughput. Moreover, the circuit is robust against process-voltage-temperature variations, in part due to inclusion of additional FG cells that are utilized for offset compensation. 
    more » « less