skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 21, 2026

Title: High-temperature surface state in Kondo insulator U 3 Bi 4 Ni 3
The resurgence of interest in Kondo insulators has been driven by two major mysteries: the presence of metallic surface states and the observation of quantum oscillations. To further explore these mysteries, it is crucial to investigate another similar system beyond the two existing ones, SmB6and YbB12. Here, we address this by reporting on a Kondo insulator, U3Bi4Ni3. Our transport measurements reveal that a surface state emerges below 250 kelvin and dominates transport properties below 150 kelvin, which is well above the temperature scale of SmB6and YbB12. At low temperatures, the surface conductivity is about one order of magnitude higher than the bulk. The robustness of the surface state indicates that it is inherently protected. The similarities and differences between U3Bi4Ni3and the other two Kondo insulators will provide valuable insights into the nature of metallic surface states in Kondo insulators and their interplay with strong electron correlations.  more » « less
Award ID(s):
2236528 2152221
PAR ID:
10578804
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
11
Issue:
12
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The impact of nonmagnetic and magnetic impurities on topological insulators is a central focus concerning their fundamental physics and possible spintronics and quantum computing applications. Combining scanning tunneling spectroscopy with transport measurements, we investigate, both locally and globally, the effect of nonmagnetic and magnetic substituents in SmB 6 , a predicted topological Kondo insulator. Around the so-introduced substitutents and in accord with theoretical predictions, the surface states are locally suppressed with different length scales depending on the substituent’s magnetic properties. For sufficiently high substituent concentrations, these states are globally destroyed. Similarly, using a magnetic tip in tunneling spectroscopy also resulted in largely suppressed surface states. Hence, a destruction of the surface states is always observed close to atoms with substantial magnetic moment. This points to the topological nature of the surface states in SmB 6 and illustrates how magnetic impurities destroy the surface states from microscopic to macroscopic length scales. 
    more » « less
  2. Recently, evidence for a conducting surface state (CSS) below 19 K was reported for the correlatedd-electron small gap semiconductor FeSi. In the work reported herein, the CSS and the bulk phase of FeSi were probed via electrical resistivity ρ measurements as a function of temperatureT, magnetic fieldBto 60 T, and pressurePto 7.6 GPa, and by means of a magnetic field-modulated microwave spectroscopy (MFMMS) technique. The properties of FeSi were also compared with those of the Kondo insulator SmB6to address the question of whether FeSi is ad-electron analogue of anf-electron Kondo insulator and, in addition, a “topological Kondo insulator” (TKI). The overall behavior of the magnetoresistance of FeSi at temperatures above and below the onset temperatureTS= 19 K of the CSS is similar to that of SmB6. The two energy gaps, inferred from the ρ(T) data in the semiconducting regime, increase with pressure up to about 7 GPa, followed by a drop which coincides with a sharp suppression ofTS. Several studies of ρ(T) under pressure on SmB6reveal behavior similar to that of FeSi in which the two energy gaps vanish at a critical pressure near the pressure at whichTSvanishes, although the energy gaps in SmB6initially decrease with pressure, whereas in FeSi they increase with pressure. The MFMMS measurements showed a sharp feature atTS≈ 19 K for FeSi, which could be due to ferromagnetic ordering of the CSS. However, no such feature was observed atTS≈ 4.5 K for SmB6
    more » « less
  3. Charge transfer or redistribution at oxide heterointerfaces is a critical phenomenon, often leading to remarkable properties such as two-dimensional electron gas and interfacial ferromagnetism. Despite studies on LaNiO3/LaFeO3superlattices and heterostructures, the direction and magnitude of the charge transfer remain debated, with some suggesting no charge transfer due to the high stability of Fe3+(3d5). Here, we synthesized a series of epitaxial LaNiO3/LaFeO3superlattices and demonstrated partial (up to ~0.5 e/interface unit cell) charge transfer from Fe to Ni near the interface, supported by density functional theory simulations and spectroscopic evidence of changes in Ni and Fe oxidation states. The electron transfer from LaFeO3to LaNiO3and the subsequent rearrangement of the Fe 3d band create an unexpected metallic ground state within the LaFeO3layer, strongly influencing the in-plane transport properties across the superlattice. Moreover, we establish a direct correlation between interfacial charge transfer and in-plane electrical transport properties, providing insights for designing functional oxide heterostructures with emerging properties. 
    more » « less
  4. Abstract Single crystals of U2Mn3Ge and U2Fe3Ge with a Kagome lattice structure were synthesized using a high-temperature self-flux crystal growth method. The physical properties of these crystals were characterized through measurements of resistivity, magnetism, and specific heat. U2Fe3Ge exhibits ferromagnetic ground state and anomalous Hall effect, and U2Mn3Ge demonstrates a complex magnetic structure. Both compounds exhibit large Sommerfeld coefficient, indicating coexistence of heavy Fermion behaviour with magnetism. Our results suggest that this U2TM3Ge (TM = Mn, Fe, Co) family is a promising platform to investigate the interplay of magnetism, Kondo physics and the Kagome lattice. 
    more » « less
  5. Topological surface states (TSSs) coexist with a rapidly formed two-dimensional electron gas (2DEG) at the surface of Bi 2 Se 3 . While this complex band structure has been widely studied for its interactions between the two states in terms of electrical conductivity and carrier density, the resulting thermopower has not been investigated as thoroughly. Here, we report measurements of the temperature dependent Seebeck coefficient ( S) and electrical conductivity ( σ) on an undoped 10 nm thin Bi 2 Se 3 film over the temperature range of 100–300 K to find an overall metal-like behavior. The measured S is consistent with the theory when assuming that both the TSS and the 2DEG contribute to thermoelectric transport. Our analysis further shows that the coefficient corresponds to a Fermi level situated well above the conduction band minima of the 2DEG, resulting in comparable contributions from the TSS and the 2DEG. The thermoelectric power factor ( S 2 σ) at 300 K increases by 10%–30% over the bulk. This work provides insights into understanding and enhancing thermoelectric phenomena in topological insulators. 
    more » « less