skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applications of Shape Memory Polymers in Kinetic Buildings
Shape memory polymers (SMPs) have attracted significant attention from both industrial and academic researchers, due to their useful and fascinating functionality. One of the most common and studied external stimuli for SMPs is temperature; other stimuli include electric fields, light, magnetic fields, water, and irradiation. Solutions for SMPs have also been extensively studied in the past decade. In this research, we review, consolidate, and report the major efforts and findings documented in the SMP literature, according to different external stimuli. The corresponding mechanisms, constitutive models, and properties (i.e., mechanical, electrical, optical, shape, etc.) of the SMPs in response to different stimulus methods are then reviewed. Next, this research presents and categorizes up-to-date studies on the application of SMPs in dynamic building structures and components. Following this, we discuss the need for studying SMPs in terms of kinetic building applications, especially about building energy saving purposes, and review recent two-way SMPs and their potential for use in such applications. This review covers a number of current advances in SMPs, with a view towards applications in kinetic building engineering.  more » « less
Award ID(s):
1635089
PAR ID:
10093197
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Advances in Materials Science and Engineering
Volume:
2018
ISSN:
1687-8434
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In response to external stimuli, such as heat, light, or magnetic fields, stimuli-responsive soft materials can change their current configuration to a new equilibrium state through non-equilibrium kinetic processes, including reaction, diffusion, and viscoelastic relaxation, which generates novel spatiotemporal shape-morphing behavior. Using a photothermal shape memory polymer (SMP) cantilever beam as a model system, this work analytically, numerically, and experimentally studies its non-equilibrium kinetic processes and spatiotemporal bending under light illumination. We establish a thermomechanical model for SMPs capturing the concurrent non-equilibrium processes of heat transfer and viscoelastic relaxation, which induces inhomogeneous temperature and strain distributions through the thickness of the beam, resulting in its bending and unbending. By varying the key dimensionless parameters, we theoretically and experimentally observe different types of bending dynamics. Moreover, our theory takes into consideration changes in the angles of incidence caused by extensive beam bending, and demonstrates that this effect can dramatically delay the bending due to reduction of the effective light intensity, which is further validated experimentally. This work demonstrates programmable and predictable spatiotemporal morphing of SMPs, and provides design guidelines for SMP morphing structures and robots. 
    more » « less
  2. Shape adaptable hydrogel actuators, capable for changing their shapes in response to single or multiple thermo/other external stimulus, are considered as new emerging smart materials for a broad range of fundamental/industrial research and applications. This review mainly focuses on the recent progress (particularly over the past 5 years) on such thermo-responsive hydrogel actuators. Recent fundamental advances and engineering applications in materials design/synthesis/characterization, distinct actuation mechanisms, and intriguing examples of these hydrogel actuators of single or dual stimuli are selectively presented. Specific or general design principles for thermo-induced hydrogel actuators are also provided to better illustrate the structure-property relationship. In the end, we offer some personal perspectives on current major challenges and future research directions in this promising field. Overall, this review discusses current status, progress, and challenges of hydrogel actuators, and hopefully will motivate researchers from different fields to explore all the potentials of hydrogel actuators. 
    more » « less
  3. Abstract In this research, we investigate multi-stimuli responsive multimaterial structures by combining shape memory polymers (SMPs) with magnetoactive fillers. Our objective is to design 3D-printed composites with local and global magnetoactive filler gradients, which exhibit complex shape actuation under magnetic and thermal fields. We first carry out a rheological study of SMP dispersions containing surface-treated magnetic particles to understand the effect of magnetic particle surface treatment, additives content, and shear rate on the complex flow behavior. Our findings reveal that dispersions filled with surface-treated magnetic particles exhibit enhanced shear thinning behavior and shape integrity compared to unfunctionalized dispersions. The improved rheological behavior and shape integrity are important results that indicate that PEG-functionalized SMP composites are promising candidates for direct ink printing. To create complex actuation, a 3D printing system is designed in a way that the magnetic particle-SMP dispersions are oriented using both shear and an external magnetic field, enabling a local angular gradient of magnetic particles. In addition, a global gradient is designed-in by varying the volume fraction of magnetic particles in the SMP suspensions. By adjusting the local and global gradients of magnetic particles within the SMP, different actuation patterns can be achieved. SEM analysis confirms the presence of the global gradient in iron oxide particles and their alignment along the magnetic field direction post-printing. Vibrating Sample Magnetometry (VSM) studies reveal an improved mass magnetization along the length of the printed samples, moving away from the printing origin. In addition, the iron oxide weight percent in the samples increases from 2.5 wt.% at the printing origin to 12.5wt.% at the end, creating a pronounced Fe3O4 global gradient. These findings contribute to the development of advanced stimuli-responsive materials with tunable properties for various applications where complex shape actuation is required, including soft robotics, and biomedical devices. 
    more » « less
  4. Abstract Hydrogels, which are hydrophilic soft porous networks, are an important class of materials of broad relevance to bioanalytical chemistry, soft‐robotics, drug delivery, and regenerative medicine. Transformer hydrogels are micro‐ and mesostructured hydrogels that display a dramatic transformation of shape, form, or dimension with associated changes in function, due to engineered local variations such as in swelling or stiffness, in response to external controls or environmental stimuli. This review describes principles that can be utilized to fabricate transformer hydrogels such as by layering, patterning, or generating anisotropy, and gradients. Transformer hydrogels are classified based on their responsivity to different stimuli such as temperature, electromagnetic fields, chemicals, and biomolecules. A survey of the current research progress suggests applications of transformer hydrogels in biomimetics, soft robotics, microfluidics, tissue engineering, drug delivery, surgery, and biomedical engineering. 
    more » « less
  5. Abstract High-intensity focused ultrasound (HIFU) has been investigated as a remote and controlled activation method to noninvasively actuate shape memory polymers (SMPs), specifically in biomedical applications. However, the effects of aqueous environment on shape recoverability ofin vivoHIFU-actuated SMPs have yet to be explored. HIFU directs sound waves into a millimeter-sized tightly focused region. In this study, the response of hydrophilic and hydrophobic photopolymerized thermoset SMP networks under HIFU activation in an aqueous environment was investigated. Acrylate-based SMP networks were copolymerized in specific ratios to produce networks with independently adjusted glass transition temperatures ranging from 40 to 80 °C and two distinct water uptake behaviors. The results link the polymer swelling behavior to shape recoverability in various acoustic fields. The presence of absorbed water molecules enhances the performance of SMPs in terms of their shape memory capabilities when activated by HIFU. Overall, understanding the interplay between water uptake and HIFU-actuated shape recovery is essential for optimizing the performance of SMPs in aqueous environments and advancing their use in various medical applications. 
    more » « less