skip to main content


Title: Photo-induced spatiotemporal bending of shape memory polymer beams
Abstract In response to external stimuli, such as heat, light, or magnetic fields, stimuli-responsive soft materials can change their current configuration to a new equilibrium state through non-equilibrium kinetic processes, including reaction, diffusion, and viscoelastic relaxation, which generates novel spatiotemporal shape-morphing behavior. Using a photothermal shape memory polymer (SMP) cantilever beam as a model system, this work analytically, numerically, and experimentally studies its non-equilibrium kinetic processes and spatiotemporal bending under light illumination. We establish a thermomechanical model for SMPs capturing the concurrent non-equilibrium processes of heat transfer and viscoelastic relaxation, which induces inhomogeneous temperature and strain distributions through the thickness of the beam, resulting in its bending and unbending. By varying the key dimensionless parameters, we theoretically and experimentally observe different types of bending dynamics. Moreover, our theory takes into consideration changes in the angles of incidence caused by extensive beam bending, and demonstrates that this effect can dramatically delay the bending due to reduction of the effective light intensity, which is further validated experimentally. This work demonstrates programmable and predictable spatiotemporal morphing of SMPs, and provides design guidelines for SMP morphing structures and robots.  more » « less
Award ID(s):
2048219
NSF-PAR ID:
10439539
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Smart Materials and Structures
Volume:
31
Issue:
12
ISSN:
0964-1726
Page Range / eLocation ID:
125011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present a novel optimization framework for optimal design of structures exhibiting memory characteristics by incorporating shape memory polymers (SMPs). SMPs are a class of memory materials capable of undergoing and recovering applied deformations. A finite-element analysis incorporating the additive decomposition of small strain is implemented to analyze and predict temperature-dependent memory characteristics of SMPs. The finite element method consists of a viscoelastic material modelling combined with a temperature-dependent strain storage mechanism, giving SMPs their characteristic property. The thermo-mechanical characteristics of SMPs are exploited to actuate structural deflection to enable morphing toward a target shape. A time-dependent adjoint sensitivity formulation implemented through a recursive algorithm is used to calculate the gradients required for the topology optimization algorithm. Multimaterial topology optimization combined with the thermo-mechanical programming cycle is used to optimally distribute the active and passive SMP materials within the design domain. This allows us to tailor the response of the structures to design them with specific target displacements, by exploiting the difference in the glass-transition temperatures of the two SMP materials. Forward analysis and sensitivity calculations are combined in a PETSc-based optimization framework to enable efficient multi-functional, multimaterial structural design with controlled deformations. 
    more » « less
  2. Shape memory polymers (SMPs) have attracted significant attention from both industrial and academic researchers, due to their useful and fascinating functionality. One of the most common and studied external stimuli for SMPs is temperature; other stimuli include electric fields, light, magnetic fields, water, and irradiation. Solutions for SMPs have also been extensively studied in the past decade. In this research, we review, consolidate, and report the major efforts and findings documented in the SMP literature, according to different external stimuli. The corresponding mechanisms, constitutive models, and properties (i.e., mechanical, electrical, optical, shape, etc.) of the SMPs in response to different stimulus methods are then reviewed. Next, this research presents and categorizes up-to-date studies on the application of SMPs in dynamic building structures and components. Following this, we discuss the need for studying SMPs in terms of kinetic building applications, especially about building energy saving purposes, and review recent two-way SMPs and their potential for use in such applications. This review covers a number of current advances in SMPs, with a view towards applications in kinetic building engineering. 
    more » « less
  3. null (Ed.)
    Abstract The purpose of this paper is to characterize the dynamics and direction of self-folding of pre-strained polystyrene (PSPS) and non-pre-strained styrene (NPS), which results from local shrinkage using a new process of directed self-folding of polymer sheets based on a resistively heated ribbon that is in contact with the sheets. A temperature gradient across the thickness of this shape memory polymer (SMP) sheet induces folding along the line of contact with the heating ribbon. Varying the electric current changes the degree of folding and the extent of local material flow. This method can be used to create practical three-dimensional (3D) structures. Sheets of PSPS and NPS were cut to 10 × 20 mm samples, and their folding angles were plotted with respect to time, as obtained from in situ videography. In addition, the use of polyimide tape (Kapton) was investigated for controlling the direction of self-folding. Results show that folding happens on the opposite side of the sample with respect to the tape, regardless of which side the heating ribbon is on, or whether gravity is opposing the folding direction. The results are quantitatively explained using a viscoelastic finite element model capable of describing bidirectional folds arising from the interplay between viscoelastic relaxation and strain mismatch between polystyrene and polyimide. Given the tunability of fold times and the extent of local material flow, resistive-heat-assisted folding is a promising approach for manufacturing complex 3D lightweight structures by origami engineering. 
    more » « less
  4. Abstract

    Shape morphing materials have been extensively studied to control the formation of sophisticated three-dimensional (3D) structures and devices for a broad range of applications. Various methods, including the buckling of pre-strained bilayer composites, stimuli-responsive shape-shifting of shape memory polymers, and hydrogels, have been previously employed to transform 2D sheets to 3D structures and devices. However, the residual stress locked in these shape-shifting structures will drive them to gradually revert to their original layouts upon the removal of external stimuli or constrains. Here, we report a multistimuli-responsive vitrimer (m-vitrimer) bearing thermal- and photo-reversible disulfide bonds as shape programmable and healable materials for functional 3D devices. The mechanical properties and thermomechanical properties of vitrimer were tuned by altering the disulfide content and catalyst loading. Heat and light exposure induces effective stress relaxation and network rearrangement, enabling material shape programming and healing. We demonstrate that printed flexible smart electronics are fabricated using the m-vitrimer as a matrix and printed conductive silver nanoparticles as conductive wire. The printed electronics possess good electro-mechanical properties, strong interfacial bonding, and thermal- and photo-responsive shape programming. Moreover, the m-vitrimer can be healed upon damage by heat and light, which partially restores silver conductivity and protect the electronics from further damage. The converging of multi-stimuli-responsive polymers and printed electronics for functional 3D devices have the potential of finding broad applications in smart and morphing electronics, biomedical devices, and 4D printing.

     
    more » « less
  5. Fibrous shape memory polymers (SMPs) have received growing interest in various applications, especially in biomedical applications, which offer new structures at the microscopic level and the potential of enhanced shape deformation of SMPs. In this paper, we report on the development and investigation of the properties of acrylate-based shape memory polymer fibers, fabricated by electrospinning technology with the addition of polystyrene (PS). Fibers with different diameters are manufactured using four different PS solution concentrations (25, 30, 35, and 40 wt%) and three flow rates (1.0, 2.5, and 5.0 μL min −1 ) with a 25 kV applied voltage and 17 cm electrospinning distance. Scanning electron microscope (SEM) images reveal that the average fiber diameter varies with polymer concentration and flow rates, ranging from 0.655 ± 0.376 to 4.975 ± 1.634 μm. Dynamic mechanical analysis (DMA) and stress–strain testing present that the glass transition temperature and tensile values are affected by fiber diameter distribution. The cyclic bending test directly proves that the electrospun SMP fiber webs are able to fully recover; additionally, the recovery speed is also affected by fiber diameter. With the combination of the SMP material and electrospinning technology, this work paves the way in designing and optimizing future SMP fibers properties by adjusting the fiber diameter. 
    more » « less