skip to main content


Title: Modified Radau Collocation Method for Solving Optimal Control Problems with Nonsmooth Solutions Part II: Costate Estimation and the Transformed Adjoint System
A modified Legendre-Gauss-Radau collocation method is developed for solving optimal control problems whose solutions contain a nonsmooth optimal control. The method includes an additional variable that defines the location of nonsmoothness. In addition, collocation constraints are added at the end of a mesh interval that defines the location of nonsmoothness in the solution on each differential equation that is a function of control along with a control constraint at the endpoint of this same mesh interval. The transformed adjoint system for the modified Legendre-Gauss-Radau collocation method along with a relationship between the Lagrange multipliers of the nonlinear programming problem and a discrete approximation of the costate of the optimal control problem is then derived. Finally, it is shown via example that the new method provides an accurate approximation of the costate.  more » « less
Award ID(s):
1819002 1522629
NSF-PAR ID:
10093312
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2018 IEEE Conference on Decision and Control (CDC)
Page Range / eLocation ID:
1651 to 1656
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A new method is developed for solving optimal control problems whose solutions are nonsmooth. The method developed in this paper employs a modified form of the Legendre–Gauss–Radau orthogonal direct collocation method. This modified Legendre–Gauss–Radau method adds two variables and two constraints at the end of a mesh interval when compared with a previously developed standard Legendre– Gauss–Radau collocation method. The two additional variables are the time at the interface between two mesh intervals and the control at the end of each mesh inter- val. The two additional constraints are a collocation condition for those differential equations that depend upon the control and an inequality constraint on the control at the endpoint of each mesh interval. The additional constraints modify the search space of the nonlinear programming problem such that an accurate approximation to the location of the nonsmoothness is obtained. The transformed adjoint system of the modified Legendre–Gauss–Radau method is then developed. Using this transformed adjoint system, a method is developed to transform the Lagrange multipliers of the nonlinear programming problem to the costate of the optimal control problem. Fur- thermore, it is shown that the costate estimate satisfies one of the Weierstrass–Erdmann optimality conditions. Finally, the method developed in this paper is demonstrated on an example whose solution is nonsmooth. 
    more » « less
  2. A new method is developed for solving optimal control problems whose solutions contain a nonsmooth optimal control. The method developed in this paper employs a modified form of the Legendre-Gauss-Radau (LGR) orthogonal direct collocation method in which an additional variable and two additional constraints are included at the end of a mesh interval. The additional variable is the switch time where a discontinuity occurs. The two additional constraints are a collocation condition on each differential equation that is a function of control along with a control constraint at the endpoint of the mesh interval that defines the location of the nonsmoothness. These additional constraints modify the search space of the NLP in a manner such that an accurate approximation to the location of the nonsmoothness is obtained. An example with a nonsmooth solution is used throughout the paper to illustrate the improvement of the method over the standard Legendre-Gauss-Radau collocation method. 
    more » « less
  3. null (Ed.)
    A general-purpose C++ software program called CGPOPS is described for solving multiple-phase optimal control problems using adaptive direct orthogonal collocation methods. The software employs a Legendre-Gauss-Radau direct orthogonal collocation method to transcribe the continuous optimal control problem into a large sparse nonlinear programming problem (NLP). A class of hp mesh refinement methods are implemented that determine the number of mesh intervals and the degree of the approximating polynomial within each mesh interval to achieve a specified accuracy tolerance. The software is interfaced with the open source Newton NLP solver IPOPT. All derivatives required by the NLP solver are computed via central finite differencing, bicomplex-step derivative approximations, hyper-dual derivative approximations, or automatic differentiation. The key components of the software are described in detail, and the utility of the software is demonstrated on five optimal control problems of varying complexity. The software described in this article provides researchers a transitional platform to solve a wide variety of complex constrained optimal control problems. 
    more » « less
  4. An adaptive mesh refinement method for solving optimal control problems is developed. The method employs orthogonal collocation at Legendre–Gauss–Radau points, and adjusts both the mesh size and the degree of the approximating polynomials in the refinement process. A previously derived convergence rate is used to guide the refinement process. The method brackets discontinuities and improves solution accuracy by checking for large increases in higher-order derivatives of the state. In regions between discontinuities, where the solution is smooth, the error in the approximation is reduced by increasing the degree of the approximating polynomial. On mesh intervals where the error tolerance has been met, mesh density may be reduced either by merging adjacent mesh intervals or lowering the degree of the approximating polynomial. Finally, the method is demonstrated on two examples from the open literature and its performance is compared against a previously developed adaptive method. 
    more » « less
  5. Abstract

    A mesh refinement method is described for solving optimal control problems using Legendre‐Gauss‐Radau collocation. The method detects discontinuities in the control solution by employing an edge detection scheme based on jump function approximations. When discontinuities are identified, the mesh is refined with a targetedh‐refinement approach whereby the discontinuity locations are bracketed with mesh points. The remaining smooth portions of the mesh are refined using previously developed techniques. The method is demonstrated on two examples, and results indicate that the method solves optimal control problems with discontinuous control solutions using fewer mesh refinement iterations and less computation time when compared with previously developed methods.

     
    more » « less