skip to main content


Search for: All records

Award ID contains: 1819002

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A mesh refinement method is described for solving optimal control problems using Legendre‐Gauss‐Radau collocation. The method detects discontinuities in the control solution by employing an edge detection scheme based on jump function approximations. When discontinuities are identified, the mesh is refined with a targetedh‐refinement approach whereby the discontinuity locations are bracketed with mesh points. The remaining smooth portions of the mesh are refined using previously developed techniques. The method is demonstrated on two examples, and results indicate that the method solves optimal control problems with discontinuous control solutions using fewer mesh refinement iterations and less computation time when compared with previously developed methods.

     
    more » « less
  2. Summary

    A method is developed to numerically solve chance constrained optimal control problems. The chance constraints are reformulated as nonlinear constraints that retain the probability properties of the original constraint. The reformulation transforms the chance constrained optimal control problem into a deterministic optimal control problem that can be solved numerically. The new method developed in this paper approximates the chance constraints using Markov Chain Monte Carlo sampling and kernel density estimators whose kernels have integral functions that bound the indicator function. The nonlinear constraints resulting from the application of kernel density estimators are designed with bounds that do not violate the bounds of the original chance constraint. The method is tested on a nontrivial chance constrained modification of a soft lunar landing optimal control problem and the results are compared with results obtained using a conservative deterministic formulation of the optimal control problem. Additionally, the method is tested on a complex chance constrained unmanned aerial vehicle problem. The results show that this new method can be used to reliably solve chance constrained optimal control problems.

     
    more » « less
  3. null (Ed.)
    A new method is developed for solving optimal control problems whose solutions are nonsmooth. The method developed in this paper employs a modified form of the Legendre–Gauss–Radau orthogonal direct collocation method. This modified Legendre–Gauss–Radau method adds two variables and two constraints at the end of a mesh interval when compared with a previously developed standard Legendre– Gauss–Radau collocation method. The two additional variables are the time at the interface between two mesh intervals and the control at the end of each mesh inter- val. The two additional constraints are a collocation condition for those differential equations that depend upon the control and an inequality constraint on the control at the endpoint of each mesh interval. The additional constraints modify the search space of the nonlinear programming problem such that an accurate approximation to the location of the nonsmoothness is obtained. The transformed adjoint system of the modified Legendre–Gauss–Radau method is then developed. Using this transformed adjoint system, a method is developed to transform the Lagrange multipliers of the nonlinear programming problem to the costate of the optimal control problem. Fur- thermore, it is shown that the costate estimate satisfies one of the Weierstrass–Erdmann optimality conditions. Finally, the method developed in this paper is demonstrated on an example whose solution is nonsmooth. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    A general-purpose C++ software program called CGPOPS is described for solving multiple-phase optimal control problems using adaptive direct orthogonal collocation methods. The software employs a Legendre-Gauss-Radau direct orthogonal collocation method to transcribe the continuous optimal control problem into a large sparse nonlinear programming problem (NLP). A class of hp mesh refinement methods are implemented that determine the number of mesh intervals and the degree of the approximating polynomial within each mesh interval to achieve a specified accuracy tolerance. The software is interfaced with the open source Newton NLP solver IPOPT. All derivatives required by the NLP solver are computed via central finite differencing, bicomplex-step derivative approximations, hyper-dual derivative approximations, or automatic differentiation. The key components of the software are described in detail, and the utility of the software is demonstrated on five optimal control problems of varying complexity. The software described in this article provides researchers a transitional platform to solve a wide variety of complex constrained optimal control problems. 
    more » « less
  7. null (Ed.)
    A method is developed for transforming chance constrained optimization problems to a form numerically solvable. The transformation is accomplished by reformulating the chance constraints as nonlinear constraints using a method that combines the previously developed Split-Bernstein approximation and kernel density estimator (KDE) methods. The Split-Bernstein approximation in a particular form is a biased kernel density estimator. The bias of this kernel leads to a nonlinear approximation that does not violate the bounds of the original chance constraint. The method of applying biased KDEs to reformulate chance constraints as nonlinear constraints transforms the chance constrained optimization problem to a deterministic optimization problems that retains key properties of the chance constrained optimization problem and can be solved numerically. This method can be applied to chance constrained optimal control problems. As a result, the Split-Bernstein and Gaussian kernels are applied to a chance constrained optimal control problem and the results are compared. 
    more » « less