skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Defining the developmental program leading to meiosis in maize
In multicellular organisms, the entry into meiosis is a complex process characterized by increasing meiotic specialization. Using single-cell RNA sequencing, we reconstructed the developmental program into maize male meiosis. A smooth continuum of expression stages before meiosis was followed by a two-step transcriptome reorganization in leptotene, during which 26.7% of transcripts changed in abundance by twofold or more. Analysis of cell-cycle gene expression indicated that nearly all pregerminal cells proliferate, eliminating a stem-cell model to generate meiotic cells. Mutants defective in somatic differentiation or meiotic commitment expressed transcripts normally present in early meiosis after a delay; thus, the germinal transcriptional program is cell autonomous and can proceed despite meiotic failure.  more » « less
Award ID(s):
1754097
PAR ID:
10093320
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Science
Volume:
364
Issue:
6435
ISSN:
0036-8075
Page Range / eLocation ID:
52 to 56
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundMeiosis is a specialized cell division that underpins sexual reproduction in most eukaryotes. During meiosis, interhomolog meiotic recombination facilitates accurate chromosome segregation and generates genetic diversity by shuffling parental alleles in the gametes. The frequency of meiotic recombination inArabidopsishas a U-shaped curve in response to environmental temperature, and is dependent on the Type I, crossover (CO) interference-sensitive pathway. The mechanisms that modulate recombination frequency in response to temperature are not yet known. ResultsIn this study, we compare the transcriptomes of thermally-stressed meiotic-stage anthers frommsh4andmus81mutants that mediate the Type I and Type II meiotic recombination pathways, respectively. We show that heat stress reduces the number of expressed genes regardless of genotype. In addition,msh4mutants have a distinct gene expression pattern compared tomus81and wild type controls. Interestingly,ASY1,which encodes a HORMA domain protein that is a component of meiotic chromosome axes, is up-regulated in wild type andmus81but not inmsh4. In addition,SDSthe meiosis-specific cyclin-like gene,DMC1the meiosis-specific recombinase,SYN1/REC8the meiosis-specific cohesion complex component, andSWI1which functions in meiotic sister chromatid cohesion are up-regulated in all three genotypes. We also characterize 51 novel, previously unannotated transcripts, and show that their promoter regions are associated with A-rich meiotic recombination hotspot motifs. ConclusionsOur transcriptomic analysis ofmsh4andmus81mutants enhances our understanding of how the Type I and Type II meiotic CO pathway respond to environmental temperature stress and might provide a strategy to manipulate recombination levels in plants. 
    more » « less
  2. Freitag, M (Ed.)
    Abstract Spore killers are meiotic drive elements that can block the development of sexual spores in fungi. In the maize ear rot and mycotoxin-producing fungus Fusarium verticillioides, a spore killer called SkK has been mapped to a 102-kb interval of chromosome V. Here, we show that a gene within this interval, SKC1, is required for SkK-mediated spore killing and meiotic drive. We also demonstrate that SKC1 is associated with at least 4 transcripts, 2 sense (sense-SKC1a and sense-SKC1b) and 2 antisense (antisense-SKC1a and antisense-SKC1b). Both antisense SKC1 transcripts lack obvious protein-coding sequences and thus appear to be noncoding RNAs. In contrast, sense-SKC1a is a protein-coding transcript that undergoes A-to-I editing to sense-SKC1b in sexual tissue. Translation of sense-SKC1a produces a 70-amino-acid protein (Skc1a), whereas the translation of sense-SKC1b produces an 84-amino-acid protein (Skc1b). Heterologous expression analysis of SKC1 transcripts shows that sense-SKC1a also undergoes A-to-I editing to sense-SKC1b during the Neurospora crassa sexual cycle. Site-directed mutagenesis studies indicate that Skc1b is responsible for spore killing in Fusarium verticillioides and that it induces most meiotic cells to die in Neurospora crassa. Finally, we report that SKC1 homologs are present in over 20 Fusarium species. Overall, our results demonstrate that fungal meiotic drive elements like SKC1 can influence the outcome of meiosis by hijacking a cell’s A-to-I editing machinery and that the involvement of A-to-I editing in a fungal meiotic drive system does not preclude its horizontal transfer to a distantly related species. 
    more » « less
  3. In vascular plants, heterosporous lineages typically have fewer chromosomes than homosporous lineages. The underlying mechanism causing this disparity has been debated for over half a century. Although reproductive mode has been identified as critical to these patterns, the symmetry of meiosis during sporogenesis has been overlooked as a potential cause of the difference in chromosome numbers. In most heterosporous plants, meiosis during megasporogenesis is asymmetric, meaning one of the four meiotic products survives to become the egg. Comparatively, meiosis is symmetric in homosporous megasporogenesis and all meiotic products survive. The symmetry of meiosis is important because asymmetric meiosis enables meiotic drive and associated genomic changes, while symmetric meiosis cannot lead to meiotic drive. Meiotic drive is a deviation from Mendelian inheritance where genetic elements are preferentially inherited by the surviving egg cell, and can profoundly impact chromosome (and genome) size, structure, and number. Here we review how meiotic drive impacts chromosome number evolution in heterosporous plants, how the lack of meiotic drive in homosporous plants impacts their genomes, and explore future approaches to understand the role of meiotic drive on chromosome number across land plants. 
    more » « less
  4. Salz, H (Ed.)
    Abstract Meiosis is usually described as 4 essential and sequential processes: (1) homolog pairing; (2) synapsis, mediated by the synaptonemal complex; (3) crossing over; and (4) segregation. In this canonical model, the maturation of crossovers into chiasmata plays a vital role in holding homologs together and ensuring their segregation at the first meiotic division. However, Lepidoptera (moths and butterflies) undergo 3 distinct meiotic processes, only one of which is canonical. Lepidoptera males utilize 2 meiotic processes: canonical meiosis that produces nucleated fertile sperm, and a noncanonical meiosis that produces anucleated nonfertile sperm which are nonetheless essential for reproduction. Lepidoptera females, which carry heteromorphic sex chromosomes, undergo a completely achiasmate (lacking crossovers) meiosis, thereby requiring an alternative mechanism to ensure proper homolog segregation. Here, we report that the development of a molecular cell biology toolkit designed to properly analyze features of meiosis, including the synaptonemal complex structure and function, in the silkworm Bombyx mori. In addition to standard homology searches to identify Bombyx orthologs of known synaptonemal complex encoding genes, we developed an ortholog discovery app (Shinyapp) to identify Bombyx orthologs of proteins involved in several meiotic processes. We used this information to clone genes expressed in the testes and then created antibodies against their protein products. We used the antibodies to confirm the localization of these proteins in normal male spermatocytes, as well as using in vitro assays to confirm orthologous interactions. The development of this toolkit will facilitate further study of the unique meiotic processes that characterize meiosis in Lepidoptera. 
    more » « less
  5. Abstract Meiosis in the budding yeast Saccharomyces cerevisiae is used to create haploid yeast spores from a diploid mother cell. During meiosis II, cytokinesis occurs by closure of the prospore membrane, a membrane that initiates at the spindle pole body and grows to surround each of the haploid meiotic products. Timely prospore membrane closure requires SPS1, which encodes an STE20 family GCKIII kinase. To identify genes that may activate SPS1, we utilized a histone phosphorylation defect of sps1 mutants to screen for genes with a similar phenotype and found that cdc15 shared this phenotype. CDC15 encodes a Hippo-like kinase that is part of the mitotic exit network. We find that Sps1 complexes with Cdc15, that Sps1 phosphorylation requires Cdc15, and that CDC15 is also required for timely prospore membrane closure. We also find that SPS1, like CDC15, is required for meiosis II spindle disassembly and sustained anaphase II release of Cdc14 in meiosis. However, the NDR-kinase complex encoded by DBF2/DBF20MOB1 which functions downstream of CDC15 in mitotic cells, does not appear to play a role in spindle disassembly, timely prospore membrane closure, or sustained anaphase II Cdc14 release. Taken together, our results suggest that the mitotic exit network is rewired for exit from meiosis II, such that SPS1 replaces the NDR-kinase complex downstream of CDC15. 
    more » « less