We derive an effective spin-Hamiltonian accounting for the shape anisotropy of the zinc blende semiconductor nanocrystals within the k · p formalism explicitly taking into account the spin–orbit split-off valence band. It is shown that, for small InP nanocrystals, neglect of the spin–orbit split-off band can lead to significant underestimation of one of the two parameters determining the exciton fine-structure splittings. This parameter is only important for nanocrystals with shape anisotropy.
more »
« less
Effect of finite spin-orbit splitting on the electron-hole exchange interaction in excitons confined in semiconductor nanocrystals
We derive an effective spin-Hamiltonian accounting for the exciton fine structure in quasi-spherical zinc-blende semiconductor nanocrystals within the k · p formalism explicitly taking into account the spin-orbit split-off valence band. It is shown that, for excitons in nanocrystals made of III-V and II-VI semiconductors with fairly small spin-orbit splitting, the scaling of the electron-hole exchange interaction with the nanocrystal size insignificantly differs from the inverse nanocrystal volume law predicted within the model neglecting the spin-orbit split-off band. Numerical calculations are performed for InP nanocrystals.
more »
« less
- Award ID(s):
- 2100248
- PAR ID:
- 10507498
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 108
- Issue:
- 23
- ISSN:
- 2469-9950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Chiral perovskite nanocrystals have emerged as an interesting chiral excitonic platform that combines both structural flexibility and superior optoelectronic properties. Despite several recent demonstrations of optical activity in various chiral perovskite nanocrystals, efficient circularly polarized luminescence (CPL) with tunable energies remains a challenge. The chirality imprinting mechanism as a function of perovskite nanocrystal dimensionality remains elusive. Here, atomically thin inorganic perovskite nanoplatelets (NPLs) are synthesized with precise control of layer thickness and are functionalized by chiral surface ligands, serving as a unique platform to probe the chirality transfer mechanism at the organic/perovskite interface. It is found that chirality is successfully imprinted into mono‐, bi‐, and tri‐layer inorganic perovskite NPLs, exhibiting tunable circular dichroism (CD) and CPL responses. However, chirality transfer decreases in thicker NPLs, resulting in decreased CD and CPL dissymmetry factors for thicker NPLs. Aided by large‐scale first‐principles calculations, it is proposed that chirality transfer is mainly mediated through a surface distortion rather than a hybridization of electronic states, giving rise to symmetry breaking in the perovskite lattice and spin‐split conduction bands. The findings described here provide an in‐depth understanding of chirality transfer and design principles for distorted‐surface perovskites for chiral photonic applications.more » « less
-
Abstract The two-dimensional (2D) Ruddlesden−Popper organic-inorganic halide perovskites such as (2D)-phenethylammonium lead iodide (2D-PEPI) have layered structure that resembles multiple quantum wells (MQW). The heavy atoms in 2D-PEPI contribute a large spin-orbit coupling that influences the electronic band structure. Upon breaking the inversion symmetry, a spin splitting (‘Rashba splitting’) occurs in the electronic bands. We have studied the spin splitting in 2D-PEPI single crystals using the circular photogalvanic effect (CPGE). We confirm the existence of Rashba splitting at the electronic band extrema of 35±10 meV, and identify the main inversion symmetry breaking direction perpendicular to the MQW planes. The CPGE action spectrum above the bandgap reveals spin-polarized photocurrent generated by ultrafast relaxation of excited photocarriers separated in momentum space. Whereas the helicity dependent photocurrent with below-gap excitation is due to spin-galvanic effect of the ionized spin-polarized excitons, where spin polarization occurs in the spin-split bands due to asymmetric spin-flip.more » « less
-
Abstract There are only a few examples of nanocrystal synthesis with thallium (Tl). Here, we report the synthesis of uniform, ligand‐stabilized colloidal nanocrystals of TlBr and Tl2AgBr3nanocrystals with average diameter ranging between 10 and 20 nm. TlBr nanocrystals are made by hot injection of trimethylsilyl bromide (TMSBr) into solutions of oleylamine, oleic acid and octadecene with thallium (III) or thallium (I) acetate. Tl2AgBr3nanocrystals form when silver (I) acetate is included in the reaction. The TlBr nanocrystals have CsCl crystal structure with a direct band gap of 3.1 eV. The Tl2AgBr3nanocrystals have trigonal dolomite crystal structure with an indirect band gap of 3.1 eV. The TlBr nanocrystals made with thallium (III) were sufficiently uniform to assemble into face‐centered cubic (fcc) superlattices.more » « less
-
Cao, Yi; Wu, Judy (Ed.)Abstract We compute the spectrum of pure spin current injection in ferroelectric single-layer SnS, SnSe, GeS, and GeSe. The formalism takes into account the coherent spin dynamics of optically excited conduction states split in energy by spin–orbit coupling. The velocity of the electron’s spins is calculated as a function of incoming photon energy and angle of linearly polarized light within a full electronic band structure scheme using density functional theory. We find peak speeds of 520, 360, 270 and 370 Km s−1for SnS, SnSe, GeS and GeSe, respectively which are an order of magnitude larger than those found in bulk semiconductors, e.g., GaAs and CdSe. Interestingly, the spin velocity is almost independent of the direction of polarization of light in a range of photon energies. Our results demonstrate that single-layer SnS, SnSe, GeS and GeSe are candidates to produce on demand spin-current in spintronics applications.more » « less
An official website of the United States government

