Abstract The ability to assemble artificial systems that mimic aspects of natural light‐harvesting functions is fascinating and attractive for materials design. Given the complexity of such a system, a simple design pathway is desirable. Here, we argue that associative phase separation of oppositely charged conjugated polyelectrolytes (CPEs) can provide such a path in an environmentally benign medium: water. We find that complexation between an exciton–donor and acceptor CPE leads to formation of a complex fluid. We interrogate exciton transfer from the donor to the acceptor CPE within the complex fluid and find that transfer is highly efficient. We also find that excess molecular ions can tune the modulus of the inter‐CPE complex fluid. Even at high ion concentrations, CPEs remain complexed with significantly delocalized electronic wavefunctions. Our work lays the rational foundation for complex, tunable aqueous light‐harvesting systems via the intrinsic thermodynamics of associative phase separation. 
                        more » 
                        « less   
                    
                            
                            Conjugated polyelectrolyte-based ternary exciton funnels via liposome scaffolds
                        
                    
    
            There is great interest in developing inexpensive, molecular light-harvesting systems capable of efficiently converting photon energy to chemical potential energy. It is highly desirable to do so using self-assembly and in a manner that supports environmentally benign processing. A critical consideration in any such assembly is the ability to absorb a substantial fraction of the solar emission spectrum and to be able to efficiently move excited states through the space to a functional interface. We have previously shown that aqueous inter-conjugated polyelectrolyte (CPE) complexes can act as ultrafast and efficient energy-transfer antennae. Here we demonstrate formation of a hierarchically assembled, aqueous system based on an inter-CPE exciton donor/acceptor network and a lipid vesicle scaffold. Using a model small-molecule organic semiconductor embedded in the vesicle membrane, we form a ternary exciton funnel that is oriented towards the membrane interior. We show that, although energy transfer is efficient, the assembly morphology depends sensitively on preparation conditions and relative ionic stoichiometry. We propose several approaches towards stabilizing such aqueous assemblies. This work highlights a path to formation of an aqueous, panchromatic light-harvesting system, whose functional complexity can be systematically increased with modularity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1848069
- PAR ID:
- 10316797
- Date Published:
- Journal Name:
- Molecular Systems Design & Engineering
- ISSN:
- 2058-9689
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The ability to assemble artificial systems that mimic aspects of natural light‐harvesting functions is fascinating and attractive for materials design. Given the complexity of such a system, a simple design pathway is desirable. Here, we argue that associative phase separation of oppositely charged conjugated polyelectrolytes (CPEs) can provide such a path in an environmentally benign medium: water. We find that complexation between an exciton–donor and acceptor CPE leads to formation of a complex fluid. We interrogate exciton transfer from the donor to the acceptor CPE within the complex fluid and find that transfer is highly efficient. We also find that excess molecular ions can tune the modulus of the inter‐CPE complex fluid. Even at high ion concentrations, CPEs remain complexed with significantly delocalized electronic wavefunctions. Our work lays the rational foundation for complex, tunable aqueous light‐harvesting systems via the intrinsic thermodynamics of associative phase separation.more » « less
- 
            Bose-Einstein condensation of excitons, with its potential for frictionless energy transport, has recently been observed in materials at low temperatures. Here, we show that partial exciton condensation plays a significant role in the 18-chromophore B850 ring of the light-harvesting complex 2 (LH2) in purple bacteria. Even in the single-excitation regime, we observe that excitonic entanglement across multiple sites exhibits signatures of exciton condensation in the particle-hole reduced density matrix—a partial exciton condensate. Crucially, we find that, by distributing the exciton across multiple sites of the ring, the exciton-condensate-like state sets favorable conditions for enhanced energy transfer, both before and after decoherence. Surprisingly, this discovery reveals that excitonic condensation, previously thought to require extreme conditions, can occur in a partial form in biological systems under ambient conditions, providing new insight into energy transport. These results additionally bring new insight into the long-standing debate on quantum versus classical mechanisms in photosynthetic light harvesting by showing that quantum coherence, in the form of a partial exciton condensate, indirectly initializes subsequent classical transfer. Our findings not only deepen our understanding of quantum coherence in light harvesting but also suggest design principles for materials capable of leveraging excitonic entanglement for efficient energy transport. Published by the American Physical Society2025more » « less
- 
            Light-harvesting and intramolecular energy funneling are fundamental processes in natural photosynthesis. A comprehensive knowledge of the main structural, dynamic, and optical properties that regulate the efficiency of such processes can be deciphered through the study of artificial light-harvesting antennas, capable of mimicking natural systems. Dendrimers are some of the most explored artificial light-harvesting molecules. However, they have to be well-defined and highly branched conjugated structures, creating intramolecular energy gradients that guarantee efficient and unidirectional energy transfer. Herein, we explore the contributions of the different mechanisms responsible for the highly efficient energy funneling in a large, complex poly(phenylene–ethynylene) dendrimer, whose architecture was particularly designed to conduct the initially absorbed photons toward a spatially localized energy sink away from its surface, avoiding its quenching by the environment. For this purpose, the nonradiative photoinduced energy relaxation and redistribution are simulated by using nonadiabatic excited state molecular dynamics. In this way, the two possible direct and indirect pathways for exciton migrations, previously reported by time-resolved spectroscopy, are defined. Our results stimulate future developments of new synthetic dendrimers for applications in molecular-based photonic devices in which an enhancement in the photoemission efficiency can be predicted by changes in the detailed balance between the different intramolecular energy transfer pathways.more » « less
- 
            null (Ed.)Vibronic coupling between pigment molecules is believed to prolong coherences in photosynthetic pigment–protein complexes. Reproducing long-lived coherences using vibronically coupled chromophores in synthetic DNA constructs presents a biomimetic route to efficient artificial light harvesting. Here, we present two-dimensional (2D) electronic spectra of one monomeric Cy5 construct and two dimeric Cy5 constructs (0 bp and 1 bp between dyes) on a DNA scaffold and perform beating frequency analysis to interpret observed coherences. Power spectra of quantum beating signals of the dimers reveal high frequency oscillations that correspond to coherences between vibronic exciton states. Beating frequency maps confirm that these oscillations, 1270 cm −1 and 1545 cm −1 for the 0-bp dimer and 1100 cm −1 for the 1-bp dimer, are coherences between vibronic exciton states and that these coherences persist for ∼300 fs. Our observations are well described by a vibronic exciton model, which predicts the excitonic coupling strength in the dimers and the resulting molecular exciton states. The energy spacing between those states closely corresponds to the observed beat frequencies. MD simulations indicate that the dyes in our constructs lie largely internal to the DNA base stacking region, similar to the native design of biological light harvesting complexes. Observed coherences persist on the timescale of photosynthetic energy transfer yielding further parallels to observed biological coherences, establishing DNA as an attractive scaffold for synthetic light harvesting applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    