skip to main content


Title: Diversity‐dependent plant–soil feedbacks underlie long‐term plant diversity effects on primary productivity
Abstract

Although diversity‐dependent plant–soil feedbacks (PSFs) may contribute significantly to plant diversity effects on ecosystem functioning, the influences of underlying abiotic and biotic mechanistic pathways have been little explored to date. Here, we assessed such pathways with a PSF experiment using soil conditioned for ≥12 yr from two grassland biodiversity experiments. Model plant communities differing in plant species and functional group richness (current plant diversity treatment) were grown in soils conditioned by plant communities with either low‐ or high‐diversity (soil history treatment). Our results indicate that plant diversity can modify plant productivity through both diversity‐mediated plant–plant and plant–soil interactions, with the main driver (current plant diversity or soil history) differing with experimental context. Structural equation modeling suggests that the underlying mechanisms of PSFs were explained to a significant extent by both abiotic and biotic pathways (specifically, soil nitrogen availability and soil nematode richness). Thus, effects of plant diversity loss on plant productivity may persist or even increase over time because of biotic and abiotic soil legacy effects.

 
more » « less
Award ID(s):
1753859 1725683 1831944
NSF-PAR ID:
10461276
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
10
Issue:
4
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plants affect associated biotic and abiotic edaphic factors, with reciprocal feedbacks from soil characteristics affecting plants. These two‐way interactions between plants and soils are collectively known as plant–soil feedbacks (PSFs). The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of PSFs, although the strength and direction of feedbacks among sympatric congeners are not well‐understood. We examined plant–soil feedback responses ofAsclepias syriaca, a common clonal milkweed species, with several sympatric congeners across a gradient of increasing phylogenetic distances (A. tuberosa,A. viridis,A. sullivantii, andA. verticillata, respectively). Plant–soil feedbacks were measured through productivity and colonization by arbuscular mycorrhizal (AM) fungi.Asclepias syriacaproduced less biomass in soils conditioned by the most phylogenetically distant species (A. verticillata), relative to conspecific‐conditioned soils. Similarly, arbuscular mycorrhizal (AM) fungal colonization ofA. syriacaroots was reduced when grown in soils conditioned byA. verticillata, compared with colonization in plants grown in soil conditioned by any of the other threeAsclepiasspecies, indicating mycorrhizal associations are a potential mechanism of observed positive PSFs. This display of differences between the most phylogenetically distant, but not close or intermediate, paring(s) suggests a potential phylogenetic threshold, although other exogenous factors cannot be ruled out. Overall, these results highlight the potential role of phylogenetic distance in influencing positive PSFs through mutualists. The role of phylogenetic relatedness and evolutionary histories have recently emerged as a potential driver of plant–soil feedbacks (PSFs), although the strength and direction of feedbacks among sympatric congeners are not well‐understood. Congeneric, sympatric milkweeds typically generated positive PSFs in terms of productivity and AM fungal colonization, suggesting the low likelihood of coexistence among tested pairs, with a strength of feedback increasing as the phylogenetic distance increases.

     
    more » « less
  2. Abstract

    Plant productivity often increases with species richness, but the mechanisms explaining this diversity–productivity relationship are not fully understood. We tested if plant–soil feedbacks (PSF) can help to explain how biomass production changes with species richness. Using a greenhouse experiment, we measured all 240 possible PSFs for 16 plant species. At the same time, 49 plant communities with diversities ranging from one to 16 species were grown in replicated pots. A suite of plant community growth models, parameterized with (PSF) or without PSF (Null) effects, was used to predict plant growth observed in the communities. Selection effects and complementarity effects in modeled and observed data were separated. Plants created soils that increased or decreased subsequent plant growth by 25% ± 10%, but because PSFs were negative for C3and C4grasses, neutral for forbs, and positive for legumes, the net effect of all PSFs was a 2% ± 17% decrease in plant growth. Experimental plant communities with 16 species produced 37% more biomass than monocultures due to complementarity. Null models incorrectly predicted that 16‐species communities would overyield due to selection effects. Adding PSF effects to Null models decreased selection effects, increased complementarity effects, and improved correlations between observed and predicted community biomass. PSF models predicted 26% of overyielding caused by complementarity observed in experimental communities. Relative to Null models, PSF models improved the predictions of the magnitude and mechanism of the diversity–productivity relationship. Results provide clear support for PSFs as one of several mechanisms that determine diversity–productivity relationships and help close the gap in understanding how biodiversity enhances ecosystem services such as biomass production.

     
    more » « less
  3. Abstract

    Riparian zones are among the most biologically diverse ecosystems in the Intermountain West, USA, and provide valuable ecosystem services, including high rates of biotic productivity, nutrient processing, and carbon storage. Thus, their sustainability is a high priority for land managers. Large ungulates affect composition and structure of riparian/stream ecosystems through herbivory and physical effects, via trailing and trampling. Bison (Bison bison) in Yellowstone National Park (YNP) have been characterized as “ecosystem engineers” because of their demonstrated effects on phenology, aboveground productivity of grasses, and woody vegetation structure. Bison have greatly increased in numbers during the last two decades and spend large periods of time in the broad open floodplains of the Northern Range of the Park, where they are hypothesized to have multiple effects on plant species composition and diversity. We sampled indicators of bison use as well as riparian vegetation composition, diversity, and structure along eight headwater streams within YNP's Northern Range. Total fecal density ranged from 333 to 1833 fecal chips and/or piles/ha, stubble heights ranged from 7 to 49 cm, and streambank disturbance ranged from 9% to 62%. High levels of bison use were positively correlated with exotic species dominance and negatively correlated with species richness, native species diversity, willow (Salixspp.) cover, and wetland species dominance. At three sites, the intensity of bison use exceeded recommended utilization thresholds to avoid degradation of streams and riparian zones on public lands. The influences of large herbivores, principally bison, on vegetation composition and structure suggest the cumulative effects of the current densities on the Northern Range are contributing to biotic impoverishment, representing the loss of ecosystem services that are provided by native riparian plant communities. In addition, contemporary levels of bison use may be exacerbating climate change effects as observed through ungulate‐related shifts in composition toward plant assemblages adapted to warmer and drier conditions. However, the resilience of native riparian vegetation suggests that sites currently heavily utilized by bison would have the potential for recovery with a reduction in pressure by this herbivore.

     
    more » « less
  4. Abstract

    Global climate and land use change are causing woody plant encroachment in arctic, alpine, and arid/semi‐arid ecosystems around the world, yet our understanding of the belowground impacts of this phenomenon is limited. We conducted a globally distributed field study of 13 alpine sites across four continents undergoing woody plant encroachment and sampled soils from both woody encroached and nearby herbaceous plant community types. We found that woody plant encroachment influenced soil microbial richness and community composition across sites based on multiple factors including woody plant traits, site level climate, and abiotic soil conditions. In particular, root symbiont type was a key determinant of belowground effects, as Nitrogen‐fixing woody plants had higher soil fungal richness, while Ecto/Ericoid mycorrhizal species had higher soil bacterial richness and symbiont types had distinct soil microbial community composition. Woody plant leaf traits indirectly influenced soil microbes through their impact on soil abiotic conditions, primarily soil pH and C:N ratios. Finally, site‐level climate affected the overall magnitude and direction of woody plant influence, as soil fungal and bacterial richness were either higher or lower in woody encroached versus herbaceous soils depending on mean annual temperature and precipitation. All together, these results document global impacts of woody plant encroachment on soil microbial communities, but highlight that multiple biotic and abiotic pathways must be considered to scale up globally from site‐ and species‐level patterns. Considering both the aboveground and belowground effects of woody encroachment will be critical to predict future changes in alpine ecosystem structure and function and subsequent feedbacks to the global climate system.

     
    more » « less
  5. Abstract

    Arthropod abundance and diversity often track plant biomass and diversity at the local scale. However, under altered precipitation regimes and anthropogenic disturbances, plant–arthropod relationships are expected to be increasingly controlled by abiotic, rather than biotic, factors. We used an experimental precipitation gradient combined with human management in a temperate mixed‐grass prairie to examine (1) how two drivers, altered precipitation and biomass removal, can synergistically affect abiotic factors and plant communities and (2) how these effects can cascade upward, impacting the arthropod food web. Both drought and hay harvest increased soil surface temperature, and drought decreased soil moisture. Arthropod abundance decreased with low soil moisture and, contrary to our predictions, decreased with increased plant biomass. Arthropod diversity increased with soil moisture, decreased with high surface temperatures, and tracked arthropod abundance but was unaffected by plant diversity or quality. Our experiment demonstrates that arthropod abundance is directly constrained by abiotic factors and plant biomass, in turn constraining local arthropod diversity. If robust, this result suggests climate change in the southern Great Plains may directly reduce arthropod diversity.

     
    more » « less