skip to main content


Search for: All records

Award ID contains: 1753859

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Decades of experimental research have conclusively shown a positive relationship between species richness and ecosystem function. However, authoritative reviews find no consensus on how species loss affects function in natural communities. We analyse experimental and observational data in an identical way and test whether they produce similar results.

    Location

    North America and Europe (experimental communities); global (natural communities).

    Time period

    Experimental communities: 1998–2013; natural communities: 1982–2018.

    Major taxa studied

    Experimental communities: temperate grassland plants; natural communities: temperate grassland plants, tropical forest trees, kelp forest producers and native bees.

    Methods

    We used an approach inspired by the Price equation to analyse 129 datasets from experimental and natural communities worldwide. We tested how the effects of species loss on ecosystem function varied with dominance and the non‐randomness of species loss and, in turn, how these two factors differed between experiments and observations.

    Results

    Studies carried out in experimental and natural communities reached different conclusions regarding the effects of species loss. First, species loss had greater effects on ecosystem function in experiments than in nature. Second, the importance of species loss was negatively correlated with dominance in nature because as dominance increased, lost species were increasingly those contributing little to ecosystem function. Although experimental and natural communities exhibited similar levels of dominance, an analogous relationship was not possible in experiments because the order of species loss was randomized by design.

    Main conclusions

    Species loss was sometimes, but not always, the major driver of loss of function in nature. Variation in the importance of species loss was not messy and context dependent; instead, it was predicted by functional dominance. Although results from experimental and natural communities were similar in several key ways, they differed in that species loss was a consistent predictor of ecosystem function in experiments and not in nature.

     
    more » « less
  2. Abstract

    After 25 years of biodiversity experiments, it is clear that higher biodiversity (B) plant communities are usually more productive and often have greater ecosystem functioning (EF) than lower diversity communities. However, the mechanisms underlying this positive biodiversityecosystem functioning (BEF) relationship are still poorly understood.

    The vast majority of past work in BEF research has focused on the roles of mathematically partitioned complementarity and selection effects. While these mathematical approaches have provided insights into underlying mechanisms, they have focused strongly on competition and resource partitioning.

    Importantly, mathematically partitioned complementarity effects include multiple facilitative mechanisms, including dilution of species‐specific pathogens, positive changes in soil nutrient cycling, associational defence and microclimate amelioration.

    Synthesis. This Special Feature takes an experimental and mechanistic approach to teasing out the facilitative mechanisms that underlie positive BEF relationships. As an example, we demonstrate diversity‐driven changes in microclimate amelioration. Articles in this Special Feature explore photoinhibition, experimental manipulations of microclimate, lidar examinations of plant canopy effects and higher‐order trophic interactions as facilitative mechanisms behind classic BEF processes. We emphasize the need for future BEF experiments to disentangle the facilitative mechanisms that are interlinked with niche complementarity to better understand the fundamental processes by which diversity regulates life on Earth.

     
    more » « less
  3. Abstract

    Soil carbon (C) and nitrogen (N) cycles and their complex responses to environmental changes have received increasing attention. However, large uncertainties in model predictions remain, partially due to the lack of explicit representation and parameterization of microbial processes. One great challenge is to effectively integrate rich microbial functional traits into ecosystem modeling for better predictions. Here, using soil enzymes as indicators of soil function, we developed a competitive dynamic enzyme allocation scheme and detailed enzyme‐mediated soil inorganic N processes in the Microbial‐ENzyme Decomposition (MEND) model. We conducted a rigorous calibration and validation of MEND with diverse soil C‐N fluxes, microbial C:N ratios, and functional gene abundances from a 12‐year CO2 × N grassland experiment (BioCON) in Minnesota, USA. In addition to accurately simulating soil CO2fluxes and multiple N variables, the model correctly predicted microbial C:N ratios and their negative response to enriched N supply. Model validation further showed that, compared to the changes in simulated enzyme concentrations and decomposition rates, the changes in simulated activities of eight C‐N‐associated enzymes were better explained by the measured gene abundances in responses to elevated atmospheric CO2concentration. Our results demonstrated that using enzymes as indicators of soil function and validating model predictions with functional gene abundances in ecosystem modeling can provide a basis for testing hypotheses about microbially mediated biogeochemical processes in response to environmental changes. Further development and applications of the modeling framework presented here will enable microbial ecologists to address ecosystem‐level questions beyond empirical observations, toward more predictive understanding, an ultimate goal of microbial ecology.

     
    more » « less
  4. Abstract

    Diversity and nitrogen addition have positive relationships with plant productivity, yet climate‐induced changes in water availability threaten to upend these established relationships. Using long‐term data from three experiments in a mesic grassland (ranging from 17 to 34 yr of data), we tested how the effects of species richness and nitrogen addition on community‐level plant productivity changed as a function of annual fluctuations in water availability using growing season precipitation and the Standardized Precipitation‐Evapotranspiration Index (SPEI). While results varied across experiments, our findings demonstrate that water availability can magnify the positive effects of both biodiversity and nitrogen addition on productivity. These results suggest that productivity responses to anthropogenic species diversity loss and increasing nitrogen deposition could depend on precipitation regimes, highlighting the importance of testing interactions between multiple global change drivers.

     
    more » « less
  5. Abstract

    In most plant communities, the net effect of nitrogen enrichment is an increase in plant productivity. However, nitrogen enrichment also has been shown to decrease species richness and to acidify soils, each of which may diminish the long‐term impact of nutrient enrichment on productivity. Here we use a long‐term (20 year) grassland plant diversity by nitrogen enrichment experiment in Minnesota, United States (a subexperiment within the BioCON experiment) to quantify the net impacts of nitrogen enrichment on productivity, including its potential indirect effects on productivity via changes in species richness and soil pH over an experimental diversity gradient. Overall, we found that nitrogen enrichment led to an immediate positive increment in productivity, but that this effect became nonsignificant over later years of the experiment, with the difference in productivity between fertilized and unfertilized plots decreasing in proportion to nitrogen addition‐dependent declines in soil pH and losses of plant diversity. The net effect of nitrogen enrichment on productivity could have been 14.5% more on average over 20 years in monocultures if not for nitrogen‐induced decreases in pH and about 28.5% more on average over 20 years in 16 species communities if not for nitrogen‐induced species richness losses. Together, these results suggest that the positive effects of nutrient enrichment on biomass production can diminish in their magnitude over time, especially because of soil acidification in low diversity communities and especially because of plant diversity loss in initially high diversity communities.

     
    more » « less
  6. Abstract

    Global change is impacting plant community composition, but the mechanisms underlying these changes are unclear. Using a dataset of 58 global change experiments, we tested the five fundamental mechanisms of community change: changes in evenness and richness, reordering, species gains and losses. We found 71% of communities were impacted by global change treatments, and 88% of communities that were exposed to two or more global change drivers were impacted. Further, all mechanisms of change were equally likely to be affected by global change treatments—species losses and changes in richness were just as common as species gains and reordering. We also found no evidence of a progression of community changes, for example, reordering and changes in evenness did not precede species gains and losses. We demonstrate that all processes underlying plant community composition changes are equally affected by treatments and often occur simultaneously, necessitating a wholistic approach to quantifying community changes.

     
    more » « less
  7. Abstract

    Global changes can interact to affect photosynthesis and thus ecosystem carbon capture, yet few multi‐factor field studies exist to examine such interactions. Here, we evaluate leaf gas exchange responses of five perennial grassland species from four functional groups to individual and interactive global changes in an open‐air experiment in Minnesota, USA, including elevated CO2(eCO2), warming, reduced rainfall and increased soil nitrogen supply. All four factors influenced leaf net photosynthesis and/or stomatal conductance, but almost all effects were context‐dependent, i.e. they differed among species, varied with levels of other treatments and/or depended on environmental conditions. Firstly, the response of photosynthesis to eCO2depended on species and nitrogen, became more positive as vapour pressure deficit increased and, for a C4grass and a legume, was more positive under reduced rainfall. Secondly, reduced rainfall increased photosynthesis in three functionally distinct species, potentially via acclimation to low soil moisture. Thirdly, warming had positive, neutral or negative effects on photosynthesis depending on species and rainfall. Overall, our results show that interactions among global changes and environmental conditions may complicate predictions based on simple theoretical expectations of main effects, and that the factors and interactions influencing photosynthesis vary among herbaceous species.

     
    more » « less
  8. Abstract

    Although diversity‐dependent plant–soil feedbacks (PSFs) may contribute significantly to plant diversity effects on ecosystem functioning, the influences of underlying abiotic and biotic mechanistic pathways have been little explored to date. Here, we assessed such pathways with a PSF experiment using soil conditioned for ≥12 yr from two grassland biodiversity experiments. Model plant communities differing in plant species and functional group richness (current plant diversity treatment) were grown in soils conditioned by plant communities with either low‐ or high‐diversity (soil history treatment). Our results indicate that plant diversity can modify plant productivity through both diversity‐mediated plant–plant and plant–soil interactions, with the main driver (current plant diversity or soil history) differing with experimental context. Structural equation modeling suggests that the underlying mechanisms of PSFs were explained to a significant extent by both abiotic and biotic pathways (specifically, soil nitrogen availability and soil nematode richness). Thus, effects of plant diversity loss on plant productivity may persist or even increase over time because of biotic and abiotic soil legacy effects.

     
    more » « less
  9. Abstract

    Uncertainty about long‐term leaf‐level responses to atmospheric CO2rise is a major knowledge gap that exists because of limited empirical data. Thus, it remains unclear how responses of leaf gas exchange to elevated CO2(eCO2) vary among plant species and functional groups, or across different levels of nutrient supply, and whether they persist over time for long‐lived perennials. Here, we report the effects of eCO2on rates of net photosynthesis and stomatal conductance in 14 perennial grassland species from four functional groups over two decades in a Minnesota Free‐Air CO2Enrichment experiment, BioCON. Monocultures of species belonging to C3grasses, C4grasses, forbs, and legumes were exposed to two levels of CO2and nitrogen supply in factorial combinations over 21 years. eCO2increased photosynthesis by 12.9% on average in C3species, substantially less than model predictions of instantaneous responses based on physiological theory and results of other studies, even those spanning multiple years. Acclimation of photosynthesis to eCO2was observed beginning in the first year and did not strengthen through time. Yet, contrary to expectations, the response of photosynthesis to eCO2was not enhanced by increased nitrogen supply. Differences in responses among herbaceous plant functional groups were modest, with legumes responding the most and C4grasses the least as expected, but did not further diverge over time. Leaf‐level water‐use efficiency increased by 50% under eCO2primarily because of reduced stomatal conductance. Our results imply that enhanced nitrogen supply will not necessarily diminish photosynthetic acclimation to eCO2in nitrogen‐limited systems, and that significant and consistent declines in stomatal conductance and increases in water‐use efficiency under eCO2may allow plants to better withstand drought.

     
    more » « less
  10. Abstract

    Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2and ambient and enriched (+4 g N m−2 year−1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers.

     
    more » « less