Abstract Kondo lattice materials, where localized magnetic moments couple to itinerant electrons, provide a very rich backdrop for strong electron correlations. They are known to realize many exotic phenomena, with a dramatic example being recent observations of quantum oscillations and metallic thermal conduction in insulators, implying the emergence of enigmatic charge-neutral fermions. Here, we show that thermal conductivity and specific heat measurements in insulating YbIr 3 Si 7 reveal emergent neutral excitations, whose properties are sensitively changed by a field-driven transition between two antiferromagnetic phases. In the low-field phase, a significant violation of the Wiedemann-Franz law demonstrates that YbIr 3 Si 7 is a charge insulator but a thermal metal. In the high-field phase, thermal conductivity exhibits a sharp drop below 300 mK, indicating a transition from a thermal metal into an insulator/semimetal driven by the magnetic transition. These results suggest that spin degrees of freedom directly couple to the neutral fermions, whose emergent Fermi surface undergoes a field-driven instability at low temperatures.
more »
« less
Departure from the Wiedemann–Franz law in WP2 driven by mismatch in T-square resistivity prefactors
Abstract The Wiedemann–Franz law establishes a link between heat and charge transport due to electrons in solids. The extent of its validity in the presence of inelastic scattering is a question raised in different contexts. Here we report on a study of the electrical, σ , and thermal, κ , conductivities in WP 2 single crystals. The Wiedemann-Franz law holds at 2 K, but a downward deviation rapidly emerges upon warming. At 13 K, there is an exceptionally large mismatch between the Lorenz number and the Sommerfeld value. We show that this is driven by a fivefold discrepancy between the T -square prefactors of electrical and thermal resistivities, both caused by electron–electron scattering. This implies the existence of abundant small-scattering-angle collisions between electrons, due to strong screening. By quantifying the relative frequency of collisions conserving momentum flux, but degrading heat flux, we identify a narrow temperature window where the hierarchy of scattering times may correspond to the hydrodynamic regime.
more »
« less
- Award ID(s):
- 1720816
- PAR ID:
- 10093641
- Date Published:
- Journal Name:
- npj Quantum Materials
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2397-4648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The anomalous Hall, Nernst, and thermal Hall coefficients of the itinerant ferromagnet Fe3−xGeTe2 display anomalies upon cooling that are consistent with a topological transition that could induce deviations with respect to the Wiedemann–Franz (WF) law. This law has not yet been validated for the anomalous transport variables, with recent experimental studies yielding material-dependent results. Nevertheless, the anomalous Hall and thermal Hall coefficients of Fe3−xGeTe2 are found, within our experimental accuracy, to satisfy the WF law for magnetic fields μ0H applied along its c axis. Remarkably, large anomalous transport is also observed for μ0H||a axis with the field aligned along the gradient of the chemical potential generated by thermal gradients or electrical currents, a configuration that should not lead to their observation. These anomalous planar quantities are found to not scale with the component of the planar magnetization (M||), showing instead a sharp decrease beyond μ0H||= 4 T or the field required to align the magnetic moments along μ0H||. We argue that chiral spin structures associated with Bloch domain walls lead to a field-dependent spin chirality that produces a novel type of topological transport in the absence of interaction between the magnetic field and electrical or thermal currents. Locally chiral spin structures are captured by our Monte Carlo simulations incorporating small Dzyaloshinskii–Moriya and biquadratic exchange interactions. These observations reveal not only a new way to detect and expose topological excitations, but also a new configuration for heat conversion that expands the current technological horizon for thermoelectric energy applications.more » « less
-
Abstract We present a joint experimental‐modeling investigation of core cooling in small terrestrial bodies. Significant amounts of light elements (S, O, Mg, Si) may compose the metallic cores of terrestrial planets and moons. However, the effect of multiple light elements on transport properties, in particular, electrical resistivity and thermal conductivity, is not well constrained. Electrical experiments were conducted at 10 GPa and up to 1850 K on high‐purity powder mixtures in the Fe‐S‐O(±Mg, ±Si) systems using the multianvil apparatus and the four‐electrode technique. The sample compositions contained 5 wt.% S, up to 3 wt.% O, up to 2 wt.% Mg, and up to 1 wt.% Si. We observe that above the eutectic temperature, electrical resistivity is significantly sensitive to the nature and amount of light elements. For each composition, thermal conductivity‐temperature equations were estimated using the experimental electrical results and a modified Wiedemann‐Franz law. These equations were implemented in a thermochemical core cooling model to study the evolution of the dynamo. Modeling results suggest that bulk chemistry significantly affects the entropy available to power dynamo action during core cooling. In the case of Mars, the presence of oxygen would delay the dynamo cessation by up to 1 Gyr compared to an O‐free, Fe‐S core. Models with 3 wt% O can be reconciled with the inferred cessation time of the Martian dynamo if the core‐mantle boundary heat flow falls from >2 TW to ~0.1 TW in the first 0.5 Gyr following core formation.more » « less
-
Abstract Transport equations for electron thermal energy in the high- β e intracluster medium (ICM) are developed that include scattering from both classical collisions and self-generated whistler waves. The calculation employs an expansion of the kinetic electron equation along the ambient magnetic field in the limit of strong scattering and assumes whistler waves with low phase speeds V w ∼ v te / β e ≪ v te dominate the turbulent spectrum, with v te the electron thermal speed and β e ≫ 1 the ratio of electron thermal to magnetic pressure. We find: (1) temperature-gradient-driven whistlers dominate classical scattering when L c > L / β e , with L c the classical electron mean free path and L the electron temperature scale length, and (2) in the whistler-dominated regime the electron thermal flux is controlled by both advection at V w and a comparable diffusive term. The findings suggest whistlers limit electron heat flux over large regions of the ICM, including locations unstable to isobaric condensation. Consequences include: (1) the Field length decreases, extending the domain of thermal instability to smaller length scales, (2) the heat flux temperature dependence changes from T e 7 / 2 / L to V w nT e ∼ T e 1 / 2 , (3) the magneto-thermal- and heat-flux-driven buoyancy instabilities are impaired or completely inhibited, and (4) sound waves in the ICM propagate greater distances, as inferred from observations. This description of thermal transport can be used in macroscale ICM models.more » « less
-
Abstract We conduct two-dimensional particle-in-cell simulations to investigate the scattering of electron heat flux by self-generated oblique electromagnetic waves. The heat flux is modeled as a bi-kappa distribution with aT∥>T⊥temperature anisotropy maintained by continuous injection at the boundaries. The anisotropic distribution excites oblique whistler waves and filamentary-like Weibel instabilities. Electron velocity distributions taken after the system has reached a steady state show that these instabilities inhibit the heat flux and drive the total distributions toward isotropy. Electron trajectories in velocity space show a circular-like diffusion along constant energy surfaces in the wave frame. The key parameter controlling the scattering rate is the average speed, or drift speedvd, of the heat flux compared with the electron Alfvén speedvAe, with higher drift speeds producing stronger fluctuations and a more significant reduction of the heat flux. Reducing the density of the electrons carrying the heat flux by 50% does not significantly affect the scattering rate. A scaling law for the electron scattering rate versusvd/vAeis deduced from the simulations. The implications of these results for understanding energetic electron transport during energy release in solar flares are discussed.more » « less
An official website of the United States government

