skip to main content


Title: Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution
Engineering catalytic sites at the atomic level provide an opportunity to understand the catalyst’s active sites, which is vital to the development of improved catalysts. Herein, we show a reliable and tunable polyoxometalate (POM) template-based synthetic strategy to atomically engineer metal doping sites onto metallic 1T-MoS2, using Anderson-type POMs (XMo6, X = FeIII, CoIII, or NiII) as precursors. Benefiting from the synergistic effect of doping metals into 1T-MoS2 and the possible tuning effect of the Ni-O-Mo bond, the optimized Ni and O incorporated 1T-MoS2 (NiO@1T-MoS2) catalyst excels in the hydrogen evolution reaction (HER). With a positive onset potential of ~ 0 V and a low overpotential of -46 mV in 1.0 M KOH, its results are comparable to 20% Pt/C. First-principles calculations reveal co-doping Ni and O into 1T-MoS2 assists the processes of both water dissociation and hydrogen generation from their intermediate states. This research will expand on the ability to improve the activities of various catalysts by precisely engineering atomic activation sites to achieve significant electronic modulations and improve atomic utilization efficiencies.  more » « less
Award ID(s):
1704992
NSF-PAR ID:
10093792
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Nature communications
Volume:
10
Issue:
982
ISSN:
2041-1723
Page Range / eLocation ID:
1-11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    1T-MoS2and single-atom modified analogues represent a highly promising class of low-cost catalysts for hydrogen evolution reaction (HER). However, the role of single atoms, either as active species or promoters, remains vague despite its essentiality toward more efficient HER. In this work, we report the unambiguous identification of Ni single atom as key active sites in the basal plane of 1T-MoS2(Ni@1T-MoS2) that result in efficient HER performance. The intermediate structure of this Ni active site under catalytic conditions was captured by in situ X-ray absorption spectroscopy, where a reversible metallic Ni species (Ni0) is observed in alkaline conditions whereas Ni remains in its local structure under acidic conditions. These insights provide crucial mechanistic understanding of Ni@1T-MoS2HER electrocatalysts and suggest that the understanding gained from such in situ studies is necessary toward the development of highly efficient single-atom decorated 1T-MoS2electrocatalysts.

     
    more » « less
  2. Platinum group metal-free (PGM-free) catalysts for the oxygen reduction reaction (ORR) with atomically dispersed FeN 4 sites have emerged as a potential replacement for low-PGM catalysts in acidic polymer electrolyte fuel cells (PEFCs). In this work, we carefully tuned the doped Fe content in zeolitic imidazolate framework (ZIF)-8 precursors and achieved complete atomic dispersion of FeN 4 sites, the sole Fe species in the catalyst based on Mößbauer spectroscopy data. The Fe–N–C catalyst with the highest density of active sites achieved respectable ORR activity in rotating disk electrode (RDE) testing with a half-wave potential ( E 1/2 ) of 0.88 ± 0.01 V vs. the reversible hydrogen electrode (RHE) in 0.5 M H 2 SO 4 electrolyte. The activity degradation was found to be more significant when holding the potential at 0.85 V relative to standard potential cycling (0.6–1.0 V) in O 2 saturated acid electrolyte. The post-mortem electron microscopy analysis provides insights into possible catalyst degradation mechanisms associated with Fe–N coordination cleavage and carbon corrosion. High ORR activity was confirmed in fuel cell testing, which also divulged the promising performance of the catalysts at practical PEFC voltages. We conclude that the key factor behind the high ORR activity of the Fe–N–C catalyst is the optimum Fe content in the ZIF-8 precursor. While too little Fe in the precursors results in an insufficient density of FeN 4 sites, too much Fe leads to the formation of clusters and an ensuing significant loss in catalytic activity due to the loss of atomically dispersed Fe to inactive clusters or even nanoparticles. Advanced electron microscopy was used to obtain insights into the clustering of Fe atoms as a function of the doped Fe content. The Fe content in the precursor also affects other key catalyst properties such as the particle size, porosity, nitrogen-doping level, and carbon microstructure. Thanks to using model catalysts exclusively containing FeN 4 sites, it was possible to directly correlate the ORR activity with the density of FeN 4 species in the catalyst. 
    more » « less
  3. Recently, the fabricated MoS2 field effect transistors (FETs) with 1T-MoS2 electrodes exhibit excellent performance with rather low contact resistance, as compared with those with metals deposited directly on 2H-MoS2 (Kappera et al 2014 Nat. Mater. 13 1128), but the reason for that remains elusive. By means of density functional theory calculations, we investigated the carrier injection at the 1T/2H MoS2 interface and found that although the Schottky barrier height (SBH) values of 1T/2H MoS2 interfaces can be tuned by controlling the stacking patterns, the p-type SBH values of 1T/2H MoS2 interfaces with different stackings are lower than their corresponding n-type SBH values, which demonstrated that the metallic 1T phase can be used as an efficient hole injection layer for 2H-MoS2. In addition, as compared to the n-type Au/MoS2 and Pd/MoS2 contacts, the p-type SBH values of 1T/2H MoS2 interfaces are much lower, which stem from the efficient hole injection between 1T-MoS2 and 2H-MoS2. This can explain the low contact resistance in the MoS2 FETs with 1T-MoS2 electrodes. Notably, the SBH values can be effectively modulated by an external electric field, and a significantly low p-type SBH value can be achieved under an appropriate electric field. We also demonstrated that this approach is also valid for WS2, WSe2 and MoSe2 systems, which indicates that the method can most likely be extended to other TMDs, and thus may open new promising avenues of contact engineering in these materials. 
    more » « less
  4. Abstract

    The development of stable and efficient hydrogen evolution reaction (HER) catalysts is essential for the production of hydrogen as a clean energy resource. A combination of experiment and theory demonstrates that the normally inert basal planes of 2D layers of MoS2can be made highly catalytically active for the HER when alloyed with rhenium (Re). The presence of Re at the ≈50% level converts the material to a stable distorted tetragonal (DT) structure that shows enhanced HER activity as compared to most of the MoS2‐based catalysts reported in the literature. More importantly, this new alloy catalyst shows much better stability over time and cycling than lithiated 1T‐MoS2. Density functional theory calculations find that the role of Re is only to stabilize the DT structure, while catalysis occurs primarily in local Mo‐rich DT configurations, where the HER catalytic activity is very close to that in Pt. The study provides a new strategy to improve the overall HER performance of MoS2‐based materials via chemical doping.

     
    more » « less
  5. Abstract

    Dilute alloy CuPt and NiPt catalysts are studied in the hydrogenation of citral, a model α,β‐unsaturated aldehyde.In situandex situcharacterization is used to demonstrate that the Pt species within these nanoparticles are well dispersed and approach a single atom alloy structure. The distribution of Pt varies between the two host metal systems; under a hydrogen environment, the nanoparticle surface and near‐surface region of the NiPt nanoparticles is Pt rich, while the Pt is more uniformly distributed throughout the CuPt nanoparticles. When used for citral hydrogenation reactions, a rate enhancement is observed upon the addition of Pt to the Cu or Ni host catalysts, however this enhancement is determined to be due to the presence of additional metal and not a synergistic effect of the two metals. The Pt structure does, nonetheless, influence the observed selectivity trends. NiPt/SiO2catalysts have high selectivity to the unsaturated aldehyde citronellal while the CuPt/SiO2catalysts have increased selectivity to unsaturated alcohol products. This increased selectivity is attributed to a combination of hydrogen dissociation over Pt sites and a decrease in size of Cu ensembles due to the presence of Pt, which favors binding and hydrogenation of C=O rather than C=C bonds.

     
    more » « less