skip to main content


Title: Dual Protection Layer Strategy to Increase Photoelectrode–Catalyst Interfacial Stability: A Case Study on Black Silicon Photoelectrodes
Photoelectrode degradation under harsh solution conditions continues to be a major hurdle for long-term operation and large-scale implementation of solar fuel conversion. In this study, a dual-layer TiO2 protection strategy is presented to improve the interfacial durability between nanoporous black silicon and photocatalysts. Nanoporous silicon photocathodes decorated with catalysts are passivated twice, providing an intermediate TiO2 layer between the substrate and catalyst and an additional TiO2 layer on top of the catalysts. Atomic layer deposition of TiO2 ensures uniform coverage of both the nanoporous silicon substrate and the catalysts. After 24 h of electrolysis at pH = 0.3, unprotected photocathodes layered with platinum and molybdenum sulfide retain only 30% and 20% of their photocurrent, respectively. At the same pH, photocathodes layered with TiO2 experience an increase in photocurrent retention: 85% for platinum-coated photocathodes and 91% for molybdenum sulfide–coated photocathodes. Under alkaline conditions, unprotected photocathodes experience a 95% loss in photocurrent within the first 4 h of electrolysis. In contrast, TiO2-protected photocathodes maintain 70% of their photocurrent during 12 h of electrolysis. This approach is quite general and may be employed as a protection strategy for a variety of photoabsorber–catalyst interfaces under both acidic and basic electrolyte conditions  more » « less
Award ID(s):
1704992
NSF-PAR ID:
10093794
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Advanced materials interfaces
Issue:
6
ISSN:
2196-7350
Page Range / eLocation ID:
1802085
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Photoelectrode degradation under harsh solution conditions continues to be a major hurdle for long‐term operation and large‐scale implementation of solar fuel conversion. In this study, a dual‐layer TiO2protection strategy is presented to improve the interfacial durability between nanoporous black silicon and photocatalysts. Nanoporous silicon photocathodes decorated with catalysts are passivated twice, providing an intermediate TiO2layer between the substrate and catalyst and an additional TiO2layer on top of the catalysts. Atomic layer deposition of TiO2ensures uniform coverage of both the nanoporous silicon substrate and the catalysts. After 24 h of electrolysis at pH = 0.3, unprotected photocathodes layered with platinum and molybdenum sulfide retain only 30% and 20% of their photocurrent, respectively. At the same pH, photocathodes layered with TiO2experience an increase in photocurrent retention: 85% for platinum‐coated photocathodes and 91% for molybdenum sulfide–coated photocathodes. Under alkaline conditions, unprotected photocathodes experience a 95% loss in photocurrent within the first 4 h of electrolysis. In contrast, TiO2‐protected photocathodes maintain 70% of their photocurrent during 12 h of electrolysis. This approach is quite general and may be employed as a protection strategy for a variety of photoabsorber–catalyst interfaces under both acidic and basic electrolyte conditions.

     
    more » « less
  2. Solar water splitting using photoelectrochemical cells (PEC's) is a promising pathway toward clean and sustainable storage of renewable energy. Practical realization of solar-driven synthesis of hydrogen and oxygen integrating light absorption and electrolysis of water has been challenging because of (1) the limited stability of good photovoltaic materials under the required electrochemical conditions, and (2) photovoltaic efficiency losses due to light absorption by catalysts, the electrolyte, and generated bubbles, or reflection at their various interfaces. Herein, we evaluate a novel integrated solar water splitting architecture using efficient silicon heterojunction photovoltaic cells that avoids such losses and exhibits a solar-to-hydrogen (STH) efficiency in excess of 10%. Series-connected silicon Heterojunction with Intrinsic Thin layer (HIT) cells generate sufficient photovoltage for unassisted water splitting, with one of the cells acting as the photocathode. Platinum is deposited on the back (dark) junction of this HIT cell as the catalyst for the hydrogen evolution reaction (HER). The photocathode is protected from corrosion by a TiO 2 layer deposited by atomic layer deposition (ALD) interposed between the HIT cell and the Pt, enabling stable operation for >120 hours. Combined with oxygen evolution reaction (OER) catalysts deposited on a porous metal dark anode, these PEC's achieve stable water splitting with a record high STH efficiency for an integrated silicon photosynthesis device. 
    more » « less
  3. The two polymorphs of lithium cobalt oxide, LiCoO 2 , present an opportunity to contrast the structural requirements for reversible charge storage (battery function) vs. catalysis of water oxidation/oxygen evolution (OER; 2H 2 O → O 2 + 4H + + 4e − ). Previously, we reported high OER electrocatalytic activity from nanocrystals of the cubic phase vs. poor activity from the layered phase – the archetypal lithium-ion battery cathode. Here we apply transmission electron microscopy, electron diffraction, voltammetry and elemental analysis under OER electrolysis conditions to show that labile Li + ions partially deintercalate from layered LiCoO 2 , initiating structural reorganization to the cubic spinel LiCo 2 O 4 , in parallel with formation of a more active catalytic phase. Comparison of cubic LiCoO 2 (50 nm) to iridium (5 nm) nanoparticles for OER catalysis (commercial benchmark for membrane-based systems) in basic and neutral electrolyte reveals excellent performance in terms of Tafel slope (48 mV dec −1 ), overpotential ( η = ∼420 mV@10 mA cm −2 at pH = 14), faradaic yield (100%) and OER stability (no loss in 14 hours). The inherent OER activity of cubic LiCoO 2 and spinel LiCo 2 O 4 is attributed to the presence of [Co 4 O 4 ] n+ cubane structural units, which provide lower oxidation potential to Co 4+ and lower inter-cubane hole mobility. By contrast, the layered phase, which lacks cubane units, exhibits extensive intra-planar hole delocalization which entropically hinders the four electron/hole concerted OER reaction. An essential distinguishing trait of a truly relevant catalyst is efficient continuous operation in a real electrolyzer stack. Initial trials of cubic LiCoO 2 in a solid electrolyte alkaline membrane electrolyzer indicate continuous operation for 1000 hours (without failure) at current densities up to 400 mA cm −2 and overpotential lower than proven PGM (platinum group metal) catalysts. 
    more » « less
  4. Abstract

    Water electrolysis is the key to a decarbonized energy system, as it enables the conversion and storage of renewably generated intermittent electricity in the form of hydrogen. However, reliability challenges arising from titanium‐based porous transport layers (PTLs) have hitherto restricted the deployment of next‐generation water‐splitting devices. Here, it is shown for the first time how PTLs can be adapted so that their interface remains well protected and resistant to corrosion across ≈4000 h under real electrolysis conditions. It is also demonstrated that the malfunctioning of unprotected PTLs is a result triggered by additional fatal degradation mechanisms over the anodic catalyst layer beyond the impacts expected from iridium oxide stability. Now, superior durability and efficiency in water electrolyzers can be achieved over extended periods of operation with less‐expensive PTLs with proper protection, which can be explained by the detailed reconstruction of the interface between the different elements, materials, layers, and components presented in this work.

     
    more » « less
  5. null (Ed.)
    Changes in the local atomic arrangement in a crystal caused by lattice-mismatch-induced strain can efficiently regulate the performance of electrocatalysts for zinc–air batteries (ZABs) in many manners, mainly due to modulated electronic structure configurations that affect the adsorption energies for oxygen-intermediates formed during oxygen reduction and evolution reactions (ORR and OER). However, the application of strain engineering in electrocatalysis has been limited by the strain relaxation caused by structural instability such as dissolution and destruction, leading to insufficient durability towards the ORR/OER. Herein, we propose a doping strategy to modulate the phase transition and formation of self-supported cobalt fluoride–sulfide (CoFS) nanoporous films using a low amount of copper (Cu) as a dopant. This well-defined Cu–CoFS heterostructure overcomes the obstacle of structural instability. Our study of the proposed Cu–CoFS also helps establish the structure–property relationship of strained electrocatalysts by unraveling the role of local strain in regulating the electronic structure of the catalyst. As a proof-of-concept, the Cu–CoFS electrocatalyst with doping-modulated strain exhibited superior onset potentials of 0.91 V and 1.49 V for the ORR and OER, respectively, surpassing commercial Pt/C@RuO 2 and benchmarking non-platinum group metal (non-PGM) catalysts. ZABs with the Cu–CoFS catalyst delivered excellent charge/discharge cycling performance with an extremely low voltage gap of 0.5 V at a current density of 10 mA cm −2 and successively 0.93 V at a high current density of 100 mA cm −2 and afforded an outstanding peak power density of 255 mW cm −2 . 
    more » « less