skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Acquired and genetic host susceptibility factors and microbial pathogenic factors that predispose to nontuberculous mycobacterial infections
Award ID(s):
1743587
PAR ID:
10094129
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Current Opinion in Immunology
Volume:
54
Issue:
C
ISSN:
0952-7915
Page Range / eLocation ID:
66 to 73
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Estimations and applications of factor models often rely on the crucial condition that the number of latent factors is consistently estimated, which in turn also requires that factors be relatively strong, data are stationary and weakly serially dependent, and the sample size be fairly large, although in practical applications, one or several of these conditions may fail. In these cases, it is difficult to analyze the eigenvectors of the data matrix. To address this issue, we propose simple estimators of the latent factors using cross-sectional projections of the panel data, by weighted averages with predetermined weights. These weights are chosen to diversify away the idiosyncratic components, resulting in “diversified factors.” Because the projections are conducted cross-sectionally, they are robust to serial conditions, easy to analyze and work even for finite length of time series. We formally prove that this procedure is robust to over-estimating the number of factors, and illustrate it in several applications, including post-selection inference, big data forecasts, large covariance estimation, and factor specification tests. We also recommend several choices for the diversified weights. 
    more » « less
  2. For a system without spin–orbit coupling, the (i) nuclear plus electronic linear momentum and (ii) nuclear plus orbital electronic angular momentum are good quantum numbers. Thus, when a molecular system undergoes a nonadiabatic transition, there should be no change in the total linear or angular momentum. Now, the standard surface hopping algorithm ignores the electronic momentum and indirectly equates the momentum of the nuclear degrees of freedom to the total momentum. However, even with this simplification, the algorithm still does not conserve either the nuclear linear or the nuclear angular momenta. Here, we show that one way to address these failures is to dress the derivative couplings (i.e., the hopping directions) in two ways: (i) we disallow changes in the nuclear linear momentum by working in a translating basis (which is well known and leads to electron translation factors) and (ii) we disallow changes in the nuclear angular momentum by working in a basis that rotates around the center of mass [which is not well-known and leads to a novel, rotationally removable component of the derivative coupling that we will call electron rotation factors below, cf. Eq. (96)]. The present findings should be helpful in the short term as far as interpreting surface hopping calculations for singlet systems (without spin) and then developing the new surface hopping algorithm in the long term for systems where one cannot ignore the electronic orbital and/or spin angular momentum. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)