Abstract We propose a combined model, which integrates the latent factor model and a sparse graphical model, for network data. It is noticed that neither a latent factor model nor a sparse graphical model alone may be sufficient to capture the structure of the data. The proposed model has a latent (i.e., factor analysis) model to represent the main trends (a.k.a., factors), and a sparse graphical component that captures the remaining ad‐hoc dependence. Model selection and parameter estimation are carried out simultaneously via a penalized likelihood approach. The convexity of the objective function allows us to develop an efficient algorithm, while the penalty terms push towards low‐dimensional latent components and a sparse graphical structure. The effectiveness of our model is demonstrated via simulation studies, and the model is also applied to four real datasets: Zachary's Karate club data, Kreb's U.S. political book dataset (http://www.orgnet.com), U.S. political blog dataset , and citation network of statisticians; showing meaningful performances in practical situations.
more »
« less
Learning Latent Factors From Diversified Projections and Its Applications to Over-Estimated and Weak Factors
Estimations and applications of factor models often rely on the crucial condition that the number of latent factors is consistently estimated, which in turn also requires that factors be relatively strong, data are stationary and weakly serially dependent, and the sample size be fairly large, although in practical applications, one or several of these conditions may fail. In these cases, it is difficult to analyze the eigenvectors of the data matrix. To address this issue, we propose simple estimators of the latent factors using cross-sectional projections of the panel data, by weighted averages with predetermined weights. These weights are chosen to diversify away the idiosyncratic components, resulting in “diversified factors.” Because the projections are conducted cross-sectionally, they are robust to serial conditions, easy to analyze and work even for finite length of time series. We formally prove that this procedure is robust to over-estimating the number of factors, and illustrate it in several applications, including post-selection inference, big data forecasts, large covariance estimation, and factor specification tests. We also recommend several choices for the diversified weights.
more »
« less
- PAR ID:
- 10326337
- Date Published:
- Journal Name:
- Journal of the American Statistical Association
- ISSN:
- 0162-1459
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary We consider forecasting a single time series using a large number of predictors in the presence of a possible nonlinear forecast function. Assuming that the predictors affect the response through the latent factors, we propose to first conduct factor analysis and then apply sufficient dimension reduction on the estimated factors to derive the reduced data for subsequent forecasting. Using directional regression and the inverse third-moment method in the stage of sufficient dimension reduction, the proposed methods can capture the nonmonotone effect of factors on the response. We also allow a diverging number of factors and only impose general regularity conditions on the distribution of factors, avoiding the undesired time reversibility of the factors by the latter. These make the proposed methods fundamentally more applicable than the sufficient forecasting method of Fan et al. (2017). The proposed methods are demonstrated both in simulation studies and an empirical study of forecasting monthly macroeconomic data from 1959 to 2016. Also, our theory contributes to the literature of sufficient dimension reduction, as it includes an invariance result, a path to perform sufficient dimension reduction under the high-dimensional setting without assuming sparsity, and the corresponding order-determination procedure.more » « less
-
null (Ed.)Abstract Scientific and engineering problems often require the use of artificial intelligence to aid understanding and the search for promising designs. While Gaussian processes (GP) stand out as easy-to-use and interpretable learners, they have difficulties in accommodating big data sets, categorical inputs, and multiple responses, which has become a common challenge for a growing number of data-driven design applications. In this paper, we propose a GP model that utilizes latent variables and functions obtained through variational inference to address the aforementioned challenges simultaneously. The method is built upon the latent-variable Gaussian process (LVGP) model where categorical factors are mapped into a continuous latent space to enable GP modeling of mixed-variable data sets. By extending variational inference to LVGP models, the large training data set is replaced by a small set of inducing points to address the scalability issue. Output response vectors are represented by a linear combination of independent latent functions, forming a flexible kernel structure to handle multiple responses that might have distinct behaviors. Comparative studies demonstrate that the proposed method scales well for large data sets with over 104 data points, while outperforming state-of-the-art machine learning methods without requiring much hyperparameter tuning. In addition, an interpretable latent space is obtained to draw insights into the effect of categorical factors, such as those associated with “building blocks” of architectures and element choices in metamaterial and materials design. Our approach is demonstrated for machine learning of ternary oxide materials and topology optimization of a multiscale compliant mechanism with aperiodic microstructures and multiple materials.more » « less
-
As sessile organisms, plants have evolved unique patterns of growth and development, elaborate metabolism and special perception and signaling mechanisms to environmental cues. Likewise, plants have complex and highly special programs for transcriptional control of gene expression. A case study for the special transcription control in plants is the expansion of general transcription factors, particularly the family of Transcription Factor IIB (TFIIB)-like factors with 15 members in Arabidopsis. For more than a decade, molecular and genetic analysis has revealed important functions of these TFIIB-like factors in specific biological processes including gametogenesis, pollen tube growth guidance, embryogenesis, endosperm development, and plant-microbe interactions. The redundant, specialized, and diversified roles of these TFIIB-like factors challenge the traditional definition of general transcription factors established in other eukaryotes. In this review, we discuss general transcription factors in plants with a focus on the expansion and functional analysis of plant TFIIB-like proteins to highlight unique aspects of plant transcription programs that can be highly valuable for understanding the molecular basis of plant growth, development and responses to stress conditions.more » « less
-
Latent factor models have achieved great success in personalized recommendations, but they are also notoriously difficult to explain. In this work, we integrate regression trees to guide the learning of latent factor models for recommendation, and use the learnt tree structure to explain the resulting latent factors. Specifically, we build regression trees on users and items respectively with user-generated reviews, and associate a latent profile to each node on the trees to represent users and items. With the growth of regression tree, the latent factors are gradually refined under the regularization imposed by the tree structure. As a result, we are able to track the creation of latent profiles by looking into the path of each factor on regression trees, which thus serves as an explanation for the resulting recommendations. Extensive experiments on two large collections of Amazon and Yelp reviews demonstrate the advantage of our model over several competitive baseline algorithms. Besides, our extensive user study also confirms the practical value of explainable recommendations generated by our model.more » « less
An official website of the United States government

