skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Prediction of phase equilibria and Gibbs free energies of transfer using molecular exchange Monte Carlo in the Gibbs ensemble
Award ID(s):
1642406
PAR ID:
10094192
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Fluid Phase Equilibria
Volume:
486
Issue:
C
ISSN:
0378-3812
Page Range / eLocation ID:
106 to 118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Asynchronous Gibbs sampling has been recently shown to be fast-mixing and an accurate method for estimating probabilities of events on a small number of variables of a graphical model satisfying Dobrushin's condition~\cite{DeSaOR16}. We investigate whether it can be used to accurately estimate expectations of functions of {\em all the variables} of the model. Under the same condition, we show that the synchronous (sequential) and asynchronous Gibbs samplers can be coupled so that the expected Hamming distance between their (multivariate) samples remains bounded by O(τlogn), where n is the number of variables in the graphical model, and τ is a measure of the asynchronicity. A similar bound holds for any constant power of the Hamming distance. Hence, the expectation of any function that is Lipschitz with respect to a power of the Hamming distance, can be estimated with a bias that grows logarithmically in n. Going beyond Lipschitz functions, we consider the bias arising from asynchronicity in estimating the expectation of polynomial functions of all variables in the model. Using recent concentration of measure results, we show that the bias introduced by the asynchronicity is of smaller order than the standard deviation of the function value already present in the true model. We perform experiments on a multi-processor machine to empirically illustrate our theoretical findings. 
    more » « less
  2. Asynchronous Gibbs sampling has been recently shown to be fast-mixing and an accurate method for estimating probabilities of events on a small number of variables of a graphical model satisfying Dobrushin's condition~\cite{DeSaOR16}. We investigate whether it can be used to accurately estimate expectations of functions of {\em all the variables} of the model. Under the same condition, we show that the synchronous (sequential) and asynchronous Gibbs samplers can be coupled so that the expected Hamming distance between their (multivariate) samples remains bounded by O(τlogn), where n is the number of variables in the graphical model, and τ is a measure of the asynchronicity. A similar bound holds for any constant power of the Hamming distance. Hence, the expectation of any function that is Lipschitz with respect to a power of the Hamming distance, can be estimated with a bias that grows logarithmically in n. Going beyond Lipschitz functions, we consider the bias arising from asynchronicity in estimating the expectation of polynomial functions of all variables in the model. Using recent concentration of measure results, we show that the bias introduced by the asynchronicity is of smaller order than the standard deviation of the function value already present in the true model. We perform experiments on a multi-processor machine to empirically illustrate our theoretical findings. 
    more » « less
  3. We address in this work the problem of minimizing quantum entropies under local constraints. We suppose that macroscopic quantities, such as the particle density, current, and kinetic energy, are fixed at each point of Rd and look for a density operator over L2(Rd), minimizing an entropy functional. Such minimizers are referred to as local Gibbs states. This setting is in contrast with the classical problem of prescribing global constraints, where the total number of particles, total current, and total energy in the system are fixed. The question arises, for instance, in the derivation of fluid models from quantum dynamics. We prove, under fairly general conditions, that the entropy admits a unique constrained minimizer. Due to a lack of compactness, the main difficulty in the proof is to show that limits of minimizing sequences satisfy the local energy constraint. We tackle this issue by introducing a simpler auxiliary minimization problem and by using a monotonicity argument involving the entropy. 
    more » « less
  4. null (Ed.)