Asynchronous Gibbs sampling has been recently shown to be fast-mixing and an accurate method for estimating probabilities of events on a small number of variables of a graphical model satisfying Dobrushin's condition~\cite{DeSaOR16}. We investigate whether it can be used to accurately estimate expectations of functions of {\em all the variables} of the model. Under the same condition, we show that the synchronous (sequential) and asynchronous Gibbs samplers can be coupled so that the expected Hamming distance between their (multivariate) samples remains bounded by O(τlogn), where n is the number of variables in the graphical model, and τ is a measure of the asynchronicity. A similar bound holds for any constant power of the Hamming distance. Hence, the expectation of any function that is Lipschitz with respect to a power of the Hamming distance, can be estimated with a bias that grows logarithmically in n. Going beyond Lipschitz functions, we consider the bias arising from asynchronicity in estimating the expectation of polynomial functions of all variables in the model. Using recent concentration of measure results, we show that the bias introduced by the asynchronicity is of smaller order than the standard deviation of the function value already present in the true model. We perform experiments on a multi-processor machine to empirically illustrate our theoretical findings.
more »
« less
Skinny Gibbs: A Consistent and Scalable Gibbs Sampler for Model Selection
- Award ID(s):
- 1811768
- PAR ID:
- 10084441
- Date Published:
- Journal Name:
- Journal of the American Statistical Association
- ISSN:
- 0162-1459
- Page Range / eLocation ID:
- 1 to 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Asynchronous Gibbs sampling has been recently shown to be fast-mixing and an accurate method for estimating probabilities of events on a small number of variables of a graphical model satisfying Dobrushin's condition~\cite{DeSaOR16}. We investigate whether it can be used to accurately estimate expectations of functions of {\em all the variables} of the model. Under the same condition, we show that the synchronous (sequential) and asynchronous Gibbs samplers can be coupled so that the expected Hamming distance between their (multivariate) samples remains bounded by O(τlogn), where n is the number of variables in the graphical model, and τ is a measure of the asynchronicity. A similar bound holds for any constant power of the Hamming distance. Hence, the expectation of any function that is Lipschitz with respect to a power of the Hamming distance, can be estimated with a bias that grows logarithmically in n. Going beyond Lipschitz functions, we consider the bias arising from asynchronicity in estimating the expectation of polynomial functions of all variables in the model. Using recent concentration of measure results, we show that the bias introduced by the asynchronicity is of smaller order than the standard deviation of the function value already present in the true model. We perform experiments on a multi-processor machine to empirically illustrate our theoretical findings.more » « less
-
We address in this work the problem of minimizing quantum entropies under local constraints. We suppose that macroscopic quantities, such as the particle density, current, and kinetic energy, are fixed at each point of Rd and look for a density operator over L2(Rd), minimizing an entropy functional. Such minimizers are referred to as local Gibbs states. This setting is in contrast with the classical problem of prescribing global constraints, where the total number of particles, total current, and total energy in the system are fixed. The question arises, for instance, in the derivation of fluid models from quantum dynamics. We prove, under fairly general conditions, that the entropy admits a unique constrained minimizer. Due to a lack of compactness, the main difficulty in the proof is to show that limits of minimizing sequences satisfy the local energy constraint. We tackle this issue by introducing a simpler auxiliary minimization problem and by using a monotonicity argument involving the entropy.more » « less
-
null (Ed.)We discuss how the language of wave functions (state vectors) andassociated non-commuting Hermitian operators naturally emerges fromclassical mechanics by applying the inverse Wigner-Weyl transform to thephase space probability distribution and observables. In this language,the Schr"odinger equation follows from the Liouville equation, with \hbar ℏ now a free parameter. Classical stationary distributions can berepresented as sums over stationary states with discrete (quantized)energies, where these states directly correspond to quantum eigenstates.Interestingly, it is now classical mechanics which allows for apparentnegative probabilities to occupy eigenstates, dual to the negativeprobabilities in Wigner’s quasiprobability distribution. These negativeprobabilities are shown to disappear when allowing sufficientuncertainty in the classical distributions. We show that thiscorrespondence is particularly pronounced for canonical Gibbs ensembles,where classical eigenstates satisfy an integral eigenvalue equation thatreduces to the Schr"odinger equation in a saddle-pointapproximation controlled by the inverse temperature. We illustrate thiscorrespondence by showing that some paradigmatic examples such astunneling, band structures, Berry phases, Landau levels, levelstatistics and quantum eigenstates in chaotic potentials can bereproduced to a surprising precision from a classical Gibbs ensemble,without any reference to quantum mechanics and with all parameters(including \hbar ℏ )on the order of unity.more » « less
An official website of the United States government

