skip to main content

Title: Computational exploration of treadmilling and protrusion growth observed in fire ant rafts
Collective living systems regularly achieve cooperative emergent functions that individual organisms could not accomplish alone. The rafts of fire ants (Solenopsis invicta) are often studied in this context for their ability to create aggregated structures comprised entirely of their own bodies, including tether-like protrusions that facilitate exploration of and escape from flooded environments. While similar protrusions are observed in cytoskeletons and cellular aggregates, they are generally dependent on morphogens or external gradients leaving the isolated role of local interactions poorly understood. Here we demonstrate through an ant-inspired, agent-based numerical model how protrusions in ant rafts may emerge spontaneously due to local interactions. The model is comprised of a condensed structural network of agents that represents the monolayer of interconnected worker ants, which floats on the water and gives ant rafts their form. Experimentally, this layer perpetually contracts, which we capture through the pairwise contraction of all neighboring structural agents at a strain rate of d ˙ . On top of the structural layer, we model a dispersed, on-lattice layer of motile agents that represents free ants, which walk on top of the floating network. Experimentally, these self-propelled free ants walk with some mean persistence length and speed that we capture more » through an ant-inspired phenomenological model. Local interactions occur between neighboring free ants within some radius of detection, R , and the persistence length of freely active agents is tuned through a noise parameter, η as introduced by the Vicsek model. Both R and η where fixed to match the experimental trajectories of free ants. Treadmilling of the raft occurs as agents transition between the structural and free layers in accordance with experimental observations. Ultimately, we demonstrate how phases of exploratory protrusion growth may be induced by increased ant activity as characterized by a dimensionless parameter, A . These results provide an example in which functional morphogenesis of a living system may emerge purely from local interactions at the constituent length scale, thereby providing a source of inspiration for the development of decentralized, autonomous active matter and swarm robotics. « less
Authors:
;
Editors:
Maini, Philip K.
Award ID(s):
1761918
Publication Date:
NSF-PAR ID:
10401009
Journal Name:
PLOS Computational Biology
Volume:
18
Issue:
2
Page Range or eLocation-ID:
e1009869
ISSN:
1553-7358
Sponsoring Org:
National Science Foundation
More Like this
  1. Fire ants ( Solenopsis invicta ) are exemplary for their formation of cohered, buoyant and dynamic structures composed entirely of their own bodies when exposed to flooded environments. Here, we observe tether-like protrusions that emerge from aggregated fire ant rafts when docked to stationary, vertical rods. Ant rafts comprise a floating, structural network of interconnected ants on which a layer of freely active ants walk. We show here that sustained shape evolution is permitted by the competing mechanisms of perpetual raft contraction aided by the transition of bulk structural ants to the free active layer and outward raft expansion owing to the deposition of free ants into the structural network at the edges, culminating in global treadmilling. Furthermore, we see that protrusions emerge as a result of asymmetries in the edge deposition rate of free ants. Employing both experimental characterization and a model for self-propelled particles in strong confinement, we interpret that these asymmetries are likely to occur stochastically owing to wall accumulation effects and directional motion of active ants when strongly confined by the protrusions' relatively narrow boundaries. Together, these effects may realize the cooperative, yet spontaneous formation of protrusions that fire ants sometimes use for functional exploration andmore »to escape flooded environments.« less
  2. We introduce a model for ant trail formation, building upon previous work on biologically feasible local algorithms that plausibly describe how ants maintain trail networks. The model is a variant of a reinforced random walk on a directed graph, where ants lay pheromone on edges as they traverse them and the next edge to traverse is chosen based on the level of pheromone; this pheromone decays with time. There is a bidirectional flow of ants in the network: the forward flow proceeds along forward edges from source (e.g. the nest) to sink (e.g. a food source), and the backward flow in the opposite direction. Some fraction of ants are lost as they pass through each node (modeling the loss of ants due to exploration observed in the field). We initiate a theoretical study of this model. We note that ant navigation has inspired the field of ant colony optimization, heuristics that have been applied to several combinatorial optimization problems; however the algorithms developed there are considerably more complex and not constrained to being biologically feasible. We first consider the linear decision rule, where the flow divides itself among the next set of edges in proportion to their pheromone level. Here,more »we show that the process converges to the path with minimum leakage when the forward and backward flows do not change over time. On the other hand, when the forward and backward flows increase over time (caused by positive reinforcement from the discovery of a food source, for example), we show that the process converges to the shortest path. These results are for graphs consisting of two parallel paths (a case that has been investigated before in experiments). Through simulations, we show that these results hold for more general graphs drawn from various random graph models; proving this convergence in the general case is an interesting open problem. Further, to understand the behaviour of other decision rules beyond the linear rule, we consider a general family of decision rules. For this family, we show that there is no advantage of using a non-linear decision rule, if the goal is to find the shortest or the minimum leakage path. We also show that bidirectional flow is necessary for convergence to such paths. Our results provide a plausible explanation for field observations, and open up new avenues for further theoretical and experimental investigation.« less
  3. Abstract

    Biological transportation networks must balance competing functional priorities. The self-organizing mechanisms used to generate such networks have inspired scalable algorithms to construct and maintain low-cost and efficient human-designed transport networks. The pheromone-based trail networks of ants have been especially valuable in this regard. Here, we use turtle ants as our focal system: In contrast to the ant species usually used as models for self-organized networks, these ants live in a spatially constrained arboreal environment where both nesting options and connecting pathways are limited. Thus, they must solve a distinct set of challenges which resemble those faced by human transport engineers constrained by existing infrastructure. Here, we ask how a turtle ant colony’s choice of which nests to include in a network may be influenced by their potential to create connections to other nests. In laboratory experiments withCephalotes variansandCephalotes texanus, we show that nest choice is influenced by spatial constraints, but in unexpected ways. Under one spatial configuration, colonies preferentially occupied more connected nest sites; however, under another spatial configuration, this preference disappeared. Comparing the results of these experiments to an agent-based model, we demonstrate that this apparently idiosyncratic relationship between nest connectivity and nest choice can emerge without nestmore »preferences via a combination of self-reinforcing random movement along constrained pathways and density-dependent aggregation at nests. While this mechanism does not consistently lead to the de-novo construction of low-cost, efficient transport networks, it may be an effective way to expand a network, when coupled with processes of pruning and restructuring.

    « less
  4. Phenological mismatch can occur when plants and herbivores differentially respond to changing phenological cues, such as temperature or snow melt date. This often shifts herbivore feeding to plant stages of lower quality. How herbivores respond to plant quality may be also mediated by temperature, which could lead to temperature-by-phenology interactions. We examined how aphid abundance and mutualism with ants were impacted by temperature and host plant phenology. In this study system, aphids Aphis asclepiadis colonize flowering stalks of the host plant, Ligusticum porteri. Like other aphids, abundance of this species is dependent on ant protection. To understand how host plant phenology and temperature affect aphid abundance, we used a multiyear observational study and a field experiment. We observed 20 host plant populations over five years (2017–2021), tracking temperature and snow melt date as well as host plant phenology and insect abundance. We found host plant and aphid phenology to differentially respond to temperature and snow melt timing. Early snow melt accelerated host plant phenology to a greater extent than aphid phenology, which was more responsive to temperature. Both the likelihood of aphid colony establishment and ant recruitment were reduced when aphids colonized host plants at post-flowering stages. In 2019, wemore »experimentally accelerated host plant phenology by advancing snow melt date by two weeks. We factorially combined this treatment with open top warming chambers surrounding aphid colonies. Greatest growth occurred for colonies under ambient temperatures when they occurred on host plants at the flowering stage. Altogether, our results suggest that phenological mismatch with host plants can decrease aphid abundance, and this effect is exacerbated by temperature increases and changes to the ant–aphid mutualism.« less
  5. Creating a routing backbone is a fundamental problem in both biology and engineering. The routing backbone of the trail networks of arboreal turtle ants (Cephalotes goniodontus) connects many nests and food sources using trail pheromone deposited by ants as they walk. Unlike species that forage on the ground, the trail networks of arboreal ants are constrained by the vegetation. We examined what objectives the trail networks meet by comparing the observed ant trail networks with networks of random, hypothetical trail networks in the same surrounding vegetation and with trails optimized for four objectives: minimizing path length, minimizing average edge length, minimizing number of nodes, and minimizing opportunities to get lost. The ants’ trails minimized path length by minimizing the number of nodes traversed rather than choosing short edges. In addition, the ants’ trails reduced the opportunity for ants to get lost at each node, favoring nodes with 3D configurations most likely to be reinforced by pheromone. Thus, rather than finding the shortest edges, turtle ant trail networks take advantage of natural variation in the environment to favor coherence, keeping the ants together on the trails.