skip to main content


Title: A river runs through it both ways across time: 40Ar/39Ar detrital and bedrock muscovite geochronology constraints on the Neogene paleodrainage history of the Nenana River system, Alaska Range
Award ID(s):
1249885
NSF-PAR ID:
10094334
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geosphere
ISSN:
1553-040X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Garra panitvongi, new species, is described from the Ataran River drainage, Salween River basin, of southeastern Myanmar and western Thailand. It is the sixth species of Garra known from the Salween River basin and is readily distinguished from all congeners by the red-orange color of the body and caudal fin, and a pointed proboscis with a blue stripe on each side from the anterior margin of the orbit to the tip of the proboscis and with the stripes forming a V-shape. Garra panitvongi is known in the aquarium trade as the Redtail Garra. Descriptive information is provided on poorly known species of Garra in the Salween River basin, and Garra nujiangensis is transferred to Ageneiogarra. 

     
    more » « less
  2. null (Ed.)
    Abstract A unique feature of small mountainous rivers is that discharge can be elevated by an order of magnitude during a large rain event. The impact of time-varying discharge on freshwater transport pathways and alongshore propagation rates in the coastal ocean is not well understood. A suite of simulations in an idealized coastal ocean domain using the Regional Ocean Modeling System (ROMS) with varying steady background discharge conditions (25–100 m 3 s −1 ), pulse amplitude (200–800 m 3 s −1 ), pulse duration (1–6 days), and steady downwelling-favorable winds (0–4 m s −1 ) are compared to investigate the downstream freshwater transport along the coast (in the direction of Kelvin wave propagation) following a discharge pulse from the river. The nose of the pulse propagates rapidly alongshore at 0.04–0.32 m s −1 (faster propagation corresponds with larger pulse volume and faster winds) transporting 13%–66% of the discharge. The remainder of the discharge volume initially accumulates in the bulge near the river mouth, with lower retention for longer pulse duration and stronger winds. Following the pulse, the bulge eddy disconnects from the river mouth and is advected downstream at 0–0.1 m s −1 , equal to the depth-averaged wind-driven ambient water velocity. As it transits alongshore, it sheds freshwater volume farther downstream and the alongshore freshwater transport stays elevated between the nose and the transient bulge eddy. The evolution of freshwater transport at a plume cross section can be described by the background discharge, the passage of the pulse nose, and a slow exponential return to background conditions. 
    more » « less