skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Water Monitoring of the Choptank River and Pocomoke River, Maryland, USA
Water monitoring at four locations on the Choptank River and four locations on the Pocomoke River in Maryland, U.S.A., was conducted from 2021 through 2023. Funding and scientific rationale were provided by the National Science Foundation grant 2049073 (“Resolving Sediment Connectivity between Rivers and Estuaries by Tracking Particles with their Microbial Genetic Signature”). The monitoring locations were chosen to measure estuary dynamics from the tidal freshwater zone through the mesohaline estuary. Parameters measured included water temperature, water level, water conductivity (reported as specific conductivity), water turbidity, and water velocity.  more » « less
Award ID(s):
2049073
PAR ID:
10586853
Author(s) / Creator(s):
;
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Institution:
Stroud Water Research Center
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT ObjectiveEstuarine fishes experience significant diel and seasonal variations in their environments, with climate change introducing additional stressors, including altered salinity, temperatures, and water levels. American Eels Anguilla rostrata are present in Atlantic estuaries from Venezuela to Greenland. Despite their wide distribution and shrinking population, American Eels are understudied, in part because of the research challenges posed by their unusual catadromous life history. This study examines the spatial effects of changing estuarine water quality variables (water temperature, dissolved oxygen, and salinity) on the American Eel population in the Hudson River estuary (HRE). MethodsThe Hudson River Biological Monitoring Program, conducted from 1974 to 2017, consists of a suite of surveys recording fish abundance data and water quality variables. As the largest component of the Hudson River Biological Monitoring Program, the Long River Ichthyoplankton Survey contains 44 years of data on American Eels in the HRE. Using LRS catch data and Hudson River Biological Monitoring Program water quality measurements, we developed statistical models of American Eel population centers in the HRE. ResultsThe young-of-year and yearling-or-older population centers shifted downstream over the course of the Long River Ichthyoplankton Survey at average rates of approximately 1.1 and 0.41 km per year, respectively, despite higher temperatures and lower dissolved oxygen conditions closer to the estuary’s mouth. Mean water temperature and dissolved oxygen for the entire estuary have significant relationships with the population centers of both age-classes, although the eels were not apparently tracking stable conductivity or water temperature conditions; nor were the young of year tracking stable dissolved oxygen levels. ConclusionsThe downstream shift in HRE American Eel population centers over several decades and the relationship between this shift and changing environmental conditions indicate the need for improved understanding of the population dynamics of the globally distributed and declining species of the genus Anguilla. This knowledge is critical in the face of rapidly changing ecosystems. 
    more » « less
  2. Abstract Estuaries in the northern California current system (NCCS) experience seasonally reversing wind stress, which is expected to impact the origin and properties of inflowing ocean water. Wind stress has been shown to affect the source of estuarine inflow by driving alongshelf currents. However, the effects of vertical transport by wind‐driven Ekman dynamics and other shelf and slope currents on inflow are yet to be explored. Variations in inflow to two NCCS estuarine systems, the Salish Sea and the Columbia River estuary, were studied using particle tracking in a hydrodynamic model. Particles were released in a grid extending two degrees of latitude north and south of each estuary every two weeks of 2017 and tracked for sixty days. Inflow was identified as particles that crossed the estuary mouths. Wind stress was compared with initial horizontal and vertical positions and physical properties of shelf inflow particles. Inflow to the Salish Sea came from Vancouver Island and Washington slope water upwelled through canyons during upwelling‐favorable wind stress, and from Washington slope water or Columbia River plume water during downwelling‐favorable wind stress. Inflow to the Columbia River estuary came from Washington shelf bottom water during upwelling‐favorable wind stress and Oregon shelf surface water during downwelling‐favorable wind stress. For both estuaries, upwelling‐favorable wind stress direction was significantly correlated with a denser and deeper shelf inflow source north of the estuary mouth. These results may help predict the source and properties of inflow to estuaries in other regions with known wind or shelf current patterns. 
    more » « less
  3. Tide and salinity data collected at minute intervals over multiple semidiurnal tides were used to investigate the source of water (e.g., seawater, river, groundwater and rain) and their relative timing in mixing at the mouth of a river, a tidal creek at mid-estuary and a tidal creek at the shoreline at the head of a tropical mangrove estuary. Our objectives were to document the temporal changes in tide induced water level changes and salinity at each location and to use the relationship between salinity and water level to elucidate the sources of water and the timing of different sources of water in the hydrologic mixing processes. The data trends in tide vs. salinity (T-S) plots for the river mouth revealed mixing with seawater during rising tides and freshwater diluted seawater (brackish) drainage from the mangrove forest during ebb tides. In the mangrove creek at mid-estuary, the data trends in the T-S plots for rising tides initially showed constant salinity, followed by sharp rises in salinity to peak tide caused by seawater intrusion. The salinity decreased precipitously at the start of tidal ebbing due to influx of freshwater (rain) diluted brackish water from the mangrove forest. The data trends in the T-S plots for the tidal creek at the shoreline located at the estuary head showed constant salinity which decreased only near peak rising tide because of river dilution. During tidal ebbing, the salinity further decreased from groundwater influx before increasing to background salinity, which stayed constant to low tide. Establishing T-S patterns for multiple locations in mangrove estuaries over sub-tidal to tidal scales define the expected salinity variations in seawater-freshwater mixing which can be used to (1) establish baseline hydrologic and salinity (hydrochemical) conditions for temporal and spatial assessments and (2) serve to guide short to long-term sampling regimes for scientific studies and estuarine ecosystem management. 
    more » « less
  4. Abstract We present a curated water chemistry data set for lotic systems across the contiguous US containing 35,000,000 records from 290,000 locations. These records are spatially joined to high‐resolution national hydrography data sets, providing information on watershed area, network position, and other hydrographic information. Our curation process follows best practices applied to raw query results from the Water Quality Portal, followed by assigning network context (position and watershed attributes) to each site from the high‐resolution National Hydrography Data set. The ChemLotUS data set currently includes 11 analytes selected to represent geogenic, biogenic, and anthropogenic processes: calcium, conductivity, pH, total suspended solids, turbidity, dissolved oxygen, total organic carbon, chlorophyll a, nitrate, soluble reactive phosphorus, and total phosphorus. All records from the raw query were modified during curation, most notably by removing duplicated observations, converting units, and aggregating strongly correlated chemical forms. Following curation, 65% of the original records were preserved, with significant reductions from raw to curated data in the means of nine constituents and, more notably, in the standard deviations of all constituents. 95% of monitored river reaches were linked to three or fewer monitoring sites, with sample patterns revealing a strong measurement bias to high order streams. We demonstrate the functionality of ChemLotUS by identifying spatiotemporal patterns in water quality at the CONUS‐scale, including diurnal variations of dissolved oxygen, pH in headwaters compared to their corresponding river mouths, and total suspended solids as a function of stream order. ChemLotUS enables new opportunities for investigations of continental scale variation in and controls on water quality. 
    more » « less
  5. We used spatial data from previously mapped preferential groundwater discharges throughout the Farmington River watershed in Connecticut and Massachusetts (https://doi.org/10.5066/P915E8JY) to guide water sample collection at known locations of groundwater discharging to surface water. In 2017 and 2019 - 2021, samples were collected during general river baseflow conditions (July ? November, less than 30.9 cms mean daily discharge (USGS gage 01189995, statistics 2010-2022) when the riverbank discharge points were exposed. We collected a suite of dissolved constituents and stable isotopes of water directly in the shallow saturated sediments of active points of discharge, and coincident stream chemical samples were also collected adjacent to locations of groundwater discharge. Data collected includes nutrients (NO3, NH4, Cl, SO4, PO4, dissolved organic carbon (DOC), and total nitrogen (TN)), greenhouse gases (CO2, CH4, and N2O), dissolved gases (N2, dissolved oxygen (DO)), conductivity, sediment characteristics, temperature, and spatial information. This dataset includes 2 main files: 1) Farmington_Chemistry_2017_2021.csv contains attribute information for each biogeochemical constituent collected at preferential groundwater discharges along the Farmington River network. 2)Farmington_Temporal_Cl_Rn_Iso_2020.csv contain attribute information for source characteristic data (Chloride, Radon, Isotope) collected at locations of repeat sampling at 5 groundwater seep faces along the Farmington River (Alsop and Rainbow Island). 
    more » « less