skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Researcher/Practitioner Strategic Partnership: Linking Theory and Practice for Change in Engineering and Computer Science Education.
Our NSF funded project—Creating National Leadership Cohorts to Make Academic Change Happen (NSF 1649318)—represents a strategic partnership between researchers and practitioners in the domain of academic change. The principle investigators from the Making Academic Change Happen team from Rose-Hulman Institute of Technology provide familiarity with the literature of practical organizational change and package this into action-oriented workshops and ongoing support for teams funded through the REvolutionizing engineering and computer science Departments (RED) program. The PIs from the Center for Evaluation & Research for STEM Equity at the University of Washington provide expertise in social science research in order to investigate how the the RED teams’ change projects unfold and how the teams develop as members of national leadership cohorts for change in engineering and computer science education. Our poster for ASEE 2018 will focus on what we have learned thus far regarding the dynamics of the researcher/practitioner partnership through the RED Participatory Action Research (REDPAR) Project. According to Worrall (2007), good partnerships are “founded on trust, respect, mutual benefit, good communities, and governance structures that allow democratic decision-making, process improvement, and resource sharing.” We have seen these elements emerge through the work of the partnership to create mutual benefits. For example, the researchers have been given an “insider’s” perspective on the practitioners’ approach—their goals, motivations for certain activities, and background information and research. The practitioners’ perspective is useful for the researchers to learn since the practitioners’ familiarity with the organizational change literature has influenced the researchers’ questions and theoretical models. The practitioners’ work with the RED teams has provided insights on the teams, how they are operating, the challenges they face, and aspects of the teams’ work that may not be readily available to the researchers. As a result, the researchers have had increased access to the teams to collect data. The researchers, in turn, have been able to consider how to make their analyses useful and actionable for change-makers, the population that the practitioners are more familiar with. Insights from the researchers provide both immediate and long-term benefits to programming and increased professional impact. The researchers are trained observers, each of whom brings a unique disciplinary perspective to their observations. The richness, depth, and clarity of their observations adds immeasurably to the quality of practitioners’ interactions with the RED teams. The practitioners, for example, have revised workshop content in response to the researchers’ observations, thus ensuring that the workshop content serves the needs of the RED teams. The practitioners also benefit from the joint effort on dissemination, since they can contribute to a variety of dissemination efforts (journal papers, conference presentations, workshops). We plan to share specific examples of the strategic partnership during the poster session. In doing so, we hope to encourage researchers to seek out partnerships with practitioners in order to bridge the gap between theory and practice in engineering and computer science education.  more » « less
Award ID(s):
1649379
PAR ID:
10094483
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
American Society for Engineering Education Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Our work with teams funded through the National Science Foundation REvolutionizing Engineering and Computer Science Departments (RED) program began in 2015. Our project—funded first by a NSF EAGER grant, and then by a NSF RFE grant—focuses on understanding how the RED teams make change on their campuses and how this information about change can be captured and communicated to other STEM programs that seek to make change happen. Because our RED Participatory Action Research (REDPAR) Project is a collaboration between researchers (Center for Evaluation & Research for STEM Equity at the University of Washington) and practitioners (Making Academic Change Happen Workshop at Rose-Hulman Institute of Technology), we have challenged ourselves to develop means of communication that allow for both aspects of the work—both research and practice—to be treated equitably. As a result, we have created a new dissemination channel—the RED Participatory Action Project Tipsheet. The tipsheet format accomplishes several important goals. First, the content is drawn from both the research conducted with the RED teams and the practitioners’ work with the teams. Each tipsheet takes up a single theme and grounds the theme in the research literature while offering practical tips for applying the information. Second, the format is accessible to a wide spectrum of potential users, remaining free of jargon and applicable to multiple program and departmental contexts. Third, by publishing the tipsheets ourselves, rather than submitting them to an engineering education research journal, we make the information timely and freely available. We can make a tipsheet as soon as a theme emerges from the intersection of research data and observations of practice. During the poster session at ASEE 2019, we will share the three REDPAR Tipsheets that have been produced thus far: Creating Strategic Partnerships, Communicating Change, and Shared Vision. We will also work with attendees to demonstrate how the tipsheet content is adaptable to the attendees’ specific academic context. Our goal for the poster session is to provide attendees with tipsheet resources that are useful to their specific change project. 
    more » « less
  2. Our work with teams funded through the National Science Foundation REvolutionizing Engineering and Computer Science Departments (RED) program began in 2015. Our project—funded first by a NSF EAGER grant, and then by a NSF RFE grant—focuses on understanding how the RED teams make change on their campuses and how this information about change can be captured and communicated to other STEM programs that seek to make change happen. Because our RED Participatory Action Research (REDPAR) Project is a collaboration between researchers (Center for Evaluation & Research for STEM Equity at the University of Washington) and practitioners (Making Academic Change Happen Workshop at Rose-Hulman Institute of Technology), we have challenged ourselves to develop means of communication that allow for both aspects of the work—both research and practice—to be treated equitably. As a result, we have created a new dissemination channel—the RED Participatory Action Project Tipsheet. The tipsheet format accomplishes several important goals. First, the content is drawn from both the research conducted with the RED teams and the practitioners’ work with the teams. Each tipsheet takes up a single theme and grounds the theme in the research literature while offering practical tips for applying the information. Second, the format is accessible to a wide spectrum of potential users, remaining free of jargon and applicable to multiple program and departmental contexts. Third, by publishing the tipsheets ourselves, rather than submitting them to an engineering education research journal, we make the information timely and freely available. We can make a tipsheet as soon as a theme emerges from the intersection of research data and observations of practice. During the poster session at ASEE 2019, we will share the three REDPAR Tipsheets that have been produced thus far: Creating Strategic Partnerships, Communicating Change, and Shared Vision. We will also work with attendees to demonstrate how the tipsheet content is adaptable to the attendees’ specific academic context. Our goal for the poster session is to provide attendees with tipsheet resources that are useful to their specific change project. 
    more » « less
  3. Our work with teams funded through the National Science Foundation REvolutionizing Engineering and Computer Science Departments (RED) program began in 2015. Our project—funded first by a NSF EAGER grant, and then by a NSF RFE grant—focuses on understanding how the RED teams make change on their campuses and how this information about change can be captured and communicated to other STEM programs that seek to make change happen. Because our RED Participatory Action Research (REDPAR) Project is a collaboration between researchers (Center for Evaluation & Research for STEM Equity at the University of Washington) and practitioners (Making Academic Change Happen Workshop at Rose-Hulman Institute of Technology), we have challenged ourselves to develop means of communication that allow for both aspects of the work—both research and practice—to be treated equitably. As a result, we have created a new dissemination channel—the RED Participatory Action Project Tipsheet. The tipsheet format accomplishes several important goals. First, the content is drawn from both the research conducted with the RED teams and the practitioners’ work with the teams. Each tipsheet takes up a single theme and grounds the theme in the research literature while offering practical tips for applying the information. Second, the format is accessible to a wide spectrum of potential users, remaining free of jargon and applicable to multiple program and departmental contexts. Third, by publishing the tipsheets ourselves, rather than submitting them to an engineering education research journal, we make the information timely and freely available. We can make a tipsheet as soon as a theme emerges from the intersection of research data and observations of practice. Permalink: https://peer.asee.org/32275. 
    more » « less
  4. The objective of the Research on Organizational Partnerships in Education and STEM (ROPES) Hub is to advance understanding of organizational partnerships that support academic pathways for domestic low-income engineering students. Partnerships across the education system are essential for improving STEM; achieving the systematic, structural, or sustainable change desired by programs such as NSF’s Scholarships for STEM Students (S-STEM) program is seldom achieved by individual isolated units and often requires partnerships across silos within an academic institution (i.e., intra-institution partnerships) and across institutions (i.e., inter-institution partnerships). However, how such partnerships are built, designed, and sustained remains a great challenge facing the field. This Hub, led by a collaborative team from Virginia Tech, Weber State University, Northern Virginia Community College, and the University of Cincinnati, is working to organize groups to conduct research focused on supporting low-income undergraduate engineering, computer science, and computing students in ways that are congruent with the institutional context and resources while going beyond the direct impact on S-STEM Scholars to impact departments and institutions involved. We are zooming in on the institutional infrastructure and collaborative work between researchers, administrators and practitioners, and policymakers. The overarching research question guiding the hub is: How can intra- and inter-institutional partnerships be designed, built, and sustained to systematically support low-income engineering student success? Answering this question requires a research hub because understanding different models of organizational partnerships—and linking such research to student outcomes across a variety of institutional contexts—requires a focus across S-STEM programs that is only enabled by a research hub approach; it cannot happen in a single S-STEM program. An important contribution of this work will be to characterize aspects of problems in which collaboration and partnerships can be most helpful—supporting low-income engineering students aiming to earn a bachelor’s degree fits these conditions, representing the kind of complex system of interacting, interdependent stakeholders with differing expertise and with no systematic organization of stakeholders. 
    more » « less
  5. The Adapt, Implement, and Research at Nebraska (AIR@NE) project, funded by the NSF CSforAll Researcher-Practitioner Partnership (RPP) program, examines the adaptation of a validated K-8 Computer Science (CS) curriculum in diverse school districts statewide. Our Research-Practitioner Partnership is primarily between the University of Nebraska-Lincoln, the Lincoln Public Schools, and other diverse school districts across Nebraska. Our primary goal is to study and document how different districts, including rural, predominantly minority, and Native American reservation, adopt the curriculum and broaden participation in CS. In addition, the project is developing instructional capacity for K-8 CS education with diverse learners. Our research also adapts and develops teacher and student CS assessments, and documents case studies using design-based research methodology to show how an adaptive curriculum broadens CS participation. Our Professional Development (PD) program for K-8 CS teachers is comprehensive. It consists of three summer courses for each cohort and a series of workshops during the academic year. Of the three summer courses, two are administered in the first year for a cohort: (1) an introduction to computer science course where teachers learn fundamental CS topics and programming in a high-level programming language (e.g., Python), and engage in problem solving and practice computational thinking, and (2) a course in pedagogy for teachers to learn how to teach K-8 CS, including lesson designs, use of instructional resources such as dot-and-dash robots, and assessments. Then, the following academic year after the summer, the PD program holds a series of workshops on five separate Saturdays to support teacher implementation of their lesson modules during the academic year, reflect and improve on their lessons, reinforce on CS concepts and pedagogy techniques, review and adopt alternative instructional resources, and share insights. These Saturday workshops also facilitate further community building and resource sharing. The third course occurs in the second year for a cohort, involving dissemination of research results from the team to the teachers, opportunities to discuss new resources and approaches on teaching CS concepts and computational thinking, and sharing of experiences and insights after teachers have completed one academic year of teaching CS. Unlike the first two courses that are required of teachers, this third course is an opt-in course that combines more in- depth pedagogy and elements of leadership. Thus far, we have had two cohorts and used the design methodology to revise our PD program, making our design more robust based on the lessons learned over the two years. The course materials, assessment, and survey instruments have also been improved. While the project is on-going we have data to that indicates the impact of the work so far. There were significant pre-post gains for both cohorts in teachers’ knowledge of computer science concepts and computational thinking. Scores on the computational thinking assessment were higher than those for CS concepts, which was to be expected given their CS teaching experience. Moreover, in both cohorts, the teachers’ confidence in teaching CS improved significantly. 
    more » « less