skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unimodular graded Poisson Hopf algebras: GRADED POISSON HOPF ALGEBRAS
Award ID(s):
1700825
PAR ID:
10094541
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Bulletin of the London Mathematical Society
Volume:
50
Issue:
5
ISSN:
0024-6093
Page Range / eLocation ID:
887 to 898
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Landi, Giovanni (Ed.)
  2. A braided Frobenius algebra is a Frobenius algebra with a Yang–Baxter operator that commutes with the operations, that are related to diagrams of compact surfaces with boundary expressed as ribbon graphs. A heap is a ternary operation exemplified by a group with the operation [Formula: see text], that is ternary self-distributive. Hopf algebras can be endowed with the algebra version of the heap operation. Using this, we construct braided Frobenius algebras from a class of certain Hopf algebras that admit integrals and cointegrals. For these Hopf algebras we show that the heap operation induces a Yang–Baxter operator on the tensor product, which satisfies the required compatibility conditions. Diagrammatic methods are employed for proving commutativity between Yang–Baxter operators and Frobenius operations. 
    more » « less
  3. Abstract We consider finite-dimensional Hopf algebras $$u$$ that admit a smooth deformation $$U\to u$$ by a Noetherian Hopf algebra $$U$$ of finite global dimension. Examples of such Hopf algebras include small quantum groups over the complex numbers, restricted enveloping algebras in finite characteristic, and Drinfeld doubles of height $$1$$ group schemes. We provide a means of analyzing (cohomological) support for representations over such $$u$$, via the singularity categories of the hypersurfaces $U/(f)$ associated with functions $$f$$ on the corresponding parametrization space. We use this hypersurface approach to establish the tensor product property for cohomological support, for the following examples: functions on a finite group scheme, Drinfeld doubles of certain height 1 solvable finite group schemes, bosonized quantum complete intersections, and the small quantum Borel in type $$A$$. 
    more » « less