Unimodular graded Poisson Hopf algebras: GRADED POISSON HOPF ALGEBRAS
- Award ID(s):
- 1700825
- PAR ID:
- 10094541
- Date Published:
- Journal Name:
- Bulletin of the London Mathematical Society
- Volume:
- 50
- Issue:
- 5
- ISSN:
- 0024-6093
- Page Range / eLocation ID:
- 887 to 898
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A braided Frobenius algebra is a Frobenius algebra with a Yang–Baxter operator that commutes with the operations, that are related to diagrams of compact surfaces with boundary expressed as ribbon graphs. A heap is a ternary operation exemplified by a group with the operation [Formula: see text], that is ternary self-distributive. Hopf algebras can be endowed with the algebra version of the heap operation. Using this, we construct braided Frobenius algebras from a class of certain Hopf algebras that admit integrals and cointegrals. For these Hopf algebras we show that the heap operation induces a Yang–Baxter operator on the tensor product, which satisfies the required compatibility conditions. Diagrammatic methods are employed for proving commutativity between Yang–Baxter operators and Frobenius operations.more » « less
-
Abstract We consider finite-dimensional Hopf algebras $$u$$ that admit a smooth deformation $$U\to u$$ by a Noetherian Hopf algebra $$U$$ of finite global dimension. Examples of such Hopf algebras include small quantum groups over the complex numbers, restricted enveloping algebras in finite characteristic, and Drinfeld doubles of height $$1$$ group schemes. We provide a means of analyzing (cohomological) support for representations over such $$u$$, via the singularity categories of the hypersurfaces $U/(f)$ associated with functions $$f$$ on the corresponding parametrization space. We use this hypersurface approach to establish the tensor product property for cohomological support, for the following examples: functions on a finite group scheme, Drinfeld doubles of certain height 1 solvable finite group schemes, bosonized quantum complete intersections, and the small quantum Borel in type $$A$$.more » « less
An official website of the United States government

