skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ENERGY COMPACTION FILTERS ON GRAPHS
In classical signal processing spectral concentration is an important problem that was first formulated and analyzed by Slepian. The solution to this problem gives the optimal FIR filter that can confine the largest amount of energy in a specific bandwidth for a given filter order. The solution is also known as the prolate sequence. This study investigates the same problem for polynomial graph filters. The problem is formulated in both graph-free and graph-dependent fashions. The graph-free formulation assumes a continuous graph spectrum, in which case it becomes the polynomial concentration problem. This formulation has a universal approach that provides a theoretical reference point. However, in reality graphs have discrete spectrum. The graph-dependent formulation assumes that the eigenvalues of the graph are known and formulates the energy compaction problem accordingly. When the eigenvalues of the graph have a uniform distribution, the graph-dependent formulation is shown to be asymptotically equivalent to the graph-free formulation. However, in reality eigenvalues of a graph tend to have different densities across the spectrum. Thus, the optimal filter depends on the underlying graph operator, and a filter cannot be universally optimal for every graph.  more » « less
Award ID(s):
1712633
PAR ID:
10094558
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Global Conference on Signal and Information Processing
Page Range / eLocation ID:
783 to 787
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The eigenvalue problem for second-order ordinary differential equation (SOODE) in a finite interval with the boundary conditions of the first, second and third kind is formulated. A computational scheme of the finite element method (FEM) is presented that allows the solution of the eigenvalue problem for a SOODE with the known potential function using the programs ODPEVP and KANTBP 4M that implement FEM in the Fortran and Maple, respectively. Numerical analysis of the solution using the KANTBP 4M program is performed for the SOODE exactly solvable eigenvalue problem. The discrete energy eigenvalues and eigenfunctions are analyzed for vibrational-rotational states of the diatomic beryllium molecule solving the eigenvalue problem for the SOODE numerically with the table-valued potential function approximated by interpolation Lagrange and Hermite polynomials and its asymptotic expansion for large values of the independent variable specified as Fortran function. The efficacy of the programs is demonstrated by the calculations of twelve eigenenergies of vibrational bound states with the required accuracy, in comparison with those known from literature, and the vibrational-rotational spectrum of the diatomic beryllium molecule. 
    more » « less
  2. We address the problem of inferring an undirected graph from nodal observations, which are modeled as non-stationary graph signals generated by local diffusion dynamics on the unknown network. We propose a two-step approach where we first estimate the unknown diffusion (graph) filter, from which we recover the eigenvectors of the so-called graph-shift operator (a matrix representation of the graph). We then estimate the eigenvalues by imposing desirable properties on the graph to be recovered. To carry out the initial system identification step, we assume that second-order statistics of the inputs are available. While such quadratic filter identification problem boils down to a non-convex fourth order polynomial minimization, we propose a semidefinite relaxation with provable performance guarantees. Finally, numerical tests illustrate the use of the proposed algorithm to unveil urban mobility patterns. 
    more » « less
  3. Fast algorithms for optimal multi-robot path planning are sought after in real-world applications. Known methods, however, generally do not simultaneously guar- antee good solution optimality and good (e.g., polynomial) running time. In this work, we develop a first low-polynomial running time algorithm, called SplitAndGroup (SaG), that solves the multi-robot path planning problem on grids and grid-like environments, and produces constant factor makespan optimal solutions on average over all problem in- stances. That is, SaG is an average case O(1)-approximation algorithm and computes solutions with sub-linear makespan. SaG is capable of handling cases when the density of robots is extremely high - in a graph-theoretic setting, the al- gorithm supports cases where all vertices of the underly- ing graph are occupied. SaG attains its desirable proper- ties through a careful combination of a novel divide-and- conquer technique, which we denote as global decoupling, and network flow based methods for routing the robots. Solutions from SaG, in a weaker sense, are also a constant factor approximation on total distance optimality. 
    more » « less
  4. We propose an empirical Bayes formulation of the structure learning problem, where the prior specification assumes that all node variables have the same error variance, an assumption known to ensure the identifiability of the underlying causal directed acyclic graph. To facilitate efficient posterior computation, we approximate the posterior probability of each ordering by that of a best directed acyclic graph model, which naturally leads to an order-based Markov chain Monte Carlo algorithm. Strong selection consistency for our model in high-dimensional settings is proved under a condition that allows heterogeneous error variances, and the mixing behaviour of our sampler is theoretically investigated. Furthermore, we propose a new iterative top-down algorithm, which quickly yields an approximate solution to the structure learning problem and can be used to initialize the Markov chain Monte Carlo sampler. We demonstrate that our method outperforms other state-of-the-art algorithms under various simulation settings, and conclude the paper with a single-cell real-data study illustrating practical advantages of the proposed method. 
    more » « less
  5. Abstract The inverse scattering transform for the focusing nonlinear Schrödinger equation is presented for a general class of initial conditions whose asymptotic behavior at infinity consists of counterpropagating waves. The formulation takes into account the branched nature of the two asymptotic eigenvalues of the associated scattering problem. The Jost eigenfunctions and scattering coefficients are defined explicitly as single‐valued functions on the complex plane with jump discontinuities along certain branch cuts. The analyticity properties, symmetries, discrete spectrum, asymptotics, and behavior at the branch points are discussed explicitly. The inverse problem is formulated as a matrix Riemann‐Hilbert problem with poles. Reductions to all cases previously discussed in the literature are explicitly discussed. The scattering data associated to a few special cases consisting of physically relevant Riemann problems are explicitly computed. 
    more » « less