Abstract Short intense laser pulses are routinely used to induce rotational wave packet dynamics of molecules. Ro-vibrational wave packet dynamics has been explored comparatively infrequently, focusing predominantly on extremely light and rigid molecules such as H , H2and D2. This work presents quantum mechanical calculations that account for the rotationalandthe vibrational degrees of freedom for a heavier and rather floppy diatomic molecule, namely the neon dimer. For pumping by a strong and short non-resonant pump pulse, we identify several phenomena that depend critically on the vibrational (i.e. radial) degree of freedom. Our calculations show (i) fingerprints of the radial dynamics in the alignment signal; (ii) laser-kick induced dissociative dynamics on very short time scales (ejection of highly structured ‘jets’); and (iii) tunneling dynamics that signifies the existence of resonance states, which are supported by the effective potential curves for selected finite relative angular momenta. Our theory predictions can be explored by existing state-of-the-art experiments.
more »
« less
On rotational-vibrational spectrum of diatomic beryllium molecule
The eigenvalue problem for second-order ordinary differential equation (SOODE) in a finite interval with the boundary conditions of the first, second and third kind is formulated. A computational scheme of the finite element method (FEM) is presented that allows the solution of the eigenvalue problem for a SOODE with the known potential function using the programs ODPEVP and KANTBP 4M that implement FEM in the Fortran and Maple, respectively. Numerical analysis of the solution using the KANTBP 4M program is performed for the SOODE exactly solvable eigenvalue problem. The discrete energy eigenvalues and eigenfunctions are analyzed for vibrational-rotational states of the diatomic beryllium molecule solving the eigenvalue problem for the SOODE numerically with the table-valued potential function approximated by interpolation Lagrange and Hermite polynomials and its asymptotic expansion for large values of the independent variable specified as Fortran function. The efficacy of the programs is demonstrated by the calculations of twelve eigenenergies of vibrational bound states with the required accuracy, in comparison with those known from literature, and the vibrational-rotational spectrum of the diatomic beryllium molecule.
more »
« less
- Award ID(s):
- 1829245
- PAR ID:
- 10099667
- Date Published:
- Journal Name:
- SPIEDigitalLibrary.org/conference-proceedings-of-spie, Saratov Fall Meeting 2018: Laser Physics, Photonic Technologies, and Molecular Modeling,
- Volume:
- 11066
- Issue:
- 1106619-1
- Page Range / eLocation ID:
- 1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rotational magic conditions for ultracold molecules in the presence of Raman and Rayleigh scatteringAbstract Molecules have vibrational, rotational, spin-orbit and hyperfine degrees of freedom or quantum states, each of which responds in a unique fashion to external electromagnetic radiation. The control over superpositions of these quantum states is key to coherent manipulation of molecules. For example, the better the coherence time the longer quantum simulations can last. The important quantity for controlling an ultracold molecule with laser light is its complex-valued molecular dynamic polarizability. Its real part determines the tweezer or trapping potential as felt by the molecule, while its imaginary part limits the coherence time. Here, our study shows that efficient trapping of a molecule in its vibrational ground state can be achieved by selecting a laser frequency with a detuning on the order of tens of GHz relative to an electric-dipole-forbidden molecular transition. Close proximity to this nearly forbidden transition allows to create a sufficiently deep trapping potential for multiple rotational states without sacrificing coherence times among these states from Raman and Rayleigh scattering. In fact, we demonstrate that magic trapping conditions for multiple rotational states of the ultracold23Na87Rb polar molecule can be created.more » « less
-
We employ two-photon spectroscopy to study the vibrational states of the triplet ground state potential (a 3 Σ + ) of the 23 Na 6 Li molecule. Pairs of Na and Li atoms in an ultracold mixture are photoassociated into an excited triplet molecular state, which in turn is coupled to vibrational states of the triplet ground potential. Vibrational state binding energies, line strengths, and potential fitting parameters for the triplet ground a 3 Σ + potential are reported. We also observe rotational splitting in the lowest vibrational state.more » « less
-
null (Ed.)Quantum computing is a new and rapidly evolving paradigm for solving chemistry problems. In previous work, we developed the Quantum Annealer Eigensolver (QAE) and applied it to the calculation of the vibrational spectrum of a molecule on the D-Wave quantum annealer. However, the original QAE methodology was applicable to real symmetric matrices only. For many physics and chemistry problems, the diagonalization of complex matrices is required. For example, the calculation of quantum scattering resonances can be formulated as a complex eigenvalue problem where the real part of the eigenvalue is the resonance energy and the imaginary part is proportional to the resonance width. In the present work, we generalize the QAE to treat complex matrices: first complex Hermitian matrices and then complex symmetric matrices. These generalizations are then used to compute a quantum scattering resonance state in a 1D model potential for O + O collisions. These calculations are performed using both a software (classical) annealer and hardware annealer (the D-Wave 2000Q). The results of the complex QAE are also benchmarked against a standard linear algebra library (LAPACK). This work presents the first numerical solution of a complex eigenvalue problem of any kind on a quantum annealer, and it is the first treatment of a quantum scattering resonance on any quantum device.more » « less
-
Cross sections and thermally averaged rate coefficients for the vibrational excitation and de-excitation by electron impact on the HDO molecule are computed using a theoretical approach based entirely on first principles. This approach combines scattering matrices obtained from the UK R-matrix codes for various geometries of the target molecule, three-dimensional vibrational states of HDO, and the vibrational frame transformation. The vibrational states of the molecule are evaluated by solving the Schrödinger equation numerically, without relying on the normal-mode approximation, which is known to be inaccurate for water molecules. As a result, couplings and transitions between the vibrational states of HDO are accurately accounted for. From the calculated cross sections, thermally averaged rate coefficients and their analytical fits are provided. Significant differences between the results for HDO and H2O are observed. Additionally, an uncertainty assessment of the obtained data is performed for potential use in modeling non-local thermodynamic equilibrium (non-LTE) spectra of water in various astrophysical environments.more » « less
An official website of the United States government

