skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: One-step Aqueous Synthesis of Zn-based Quantum Dots as Potential Generators of Reactive Oxygen Species
Abstract The actual incorporation of dopant species into the ZnS Quantum Dots (QDs) host lattice will induce structural defects evidenced by a red shift in the corresponding exciton. The doping should create new intermediate energetic levels between the valence and conduction bands of the ZnS and affect the electron-hole recombination. These trap states would favour the energy transfer processes involved with the generation of cytotoxic radicals, so-called Reactive Oxygen Species, opening the possibility to apply these nanomaterials in cancer research. Any synthesis approach should consider the direct formation of the QDs in biocompatible medium. Accordingly, the present work addresses the microwave-assisted aqueous synthesis of pure and doped ZnS QDs. As-synthesized quantum dots were fully characterized on a structural, morphological and optical viewpoint. UV-Vis analyzes evidenced the excitonic peaks at approximately 310 nm, 314 nm and 315 nm for ZnS, Cu-ZnS and Mn-ZnS, respectively, Cu/Zn and Mn/Zn molar ratio was 0.05%. This indicates the actual incorporation of the dopant species into the host lattice. In addition, the Photoluminescence spectrum of non-doped ZnS nanoparticles showed a high emission peak that was red shifted when Mn 2+ or Cu 2+ were added during the synthesis process. The main emission peak of non-doped ZnS, Cu-doped ZnS and Mn-doped ZnS were observed at 438 nm, 487 nm and 521 nm, respectively. Forthcoming work will address the capacity of pure and Cu-, Mn-ZnS quantum dots to generate cytotoxic Reactive Oxygen Species for cancer treatment applications.  more » « less
Award ID(s):
1846628
PAR ID:
10094661
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
MRS Advances
Volume:
4
Issue:
07
ISSN:
2059-8521
Page Range / eLocation ID:
399 to 404
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study reports the synthesis, structural characterization, adsorption studies, nanoscale interaction, and photocatalytic application of pure and Fe-doped ZnS quantum dots for the degradation of the antibiotic cefalexin in aqueous solution. Nanoparticles were synthesized via the microwave-assisted method, and Fe doping was introduced at a 1% molar ratio. HRTEM images confirmed quasi-spherical morphology and high crystallinity, with particle sizes averaging 2.4 nm (pure) and 3.5 nm (doped). XRD analysis showed a consistent cubic ZnS structure. UV-vis spectra showed strong absorption at 316 nm for both samples, and PL measurements revealed emission quenching upon Fe doping. Photocatalytic tests under UV light demonstrated significantly higher degradation rates of 10 ppm cefalexin with Fe-doped ZnS, reaching near-complete removal within 90 min. Adsorption experiments revealed higher affinity and adsorption capacity of Fe-doped ZnS toward cefalexin compared to pure ZnS, as demonstrated by the Freundlich isotherm analyses, contributing significantly to enhanced photocatalytic degradation performance. High-resolution QTOF LC-MS analysis confirmed the breakdown of the β-lactam and thiazolidine rings of cefalexin and the formation of low-mass degradation products, including fragments at m/z 122.0371, 116.0937, and 318.2241. These findings provide strong evidence for the structural destruction of the antibiotic and validate the enhanced photocatalytic performance of Fe-doped ZnS. 
    more » « less
  2. null (Ed.)
    The multistep and continuous production of core–shell III–V semiconductor nanocrystals remains a technological challenge. We present a newly designed high-temperature and miniature continuous stirred-tank reactor cascade, for the continuous and scalable synthesis of InP/ZnS core–shell quantum dots with a safer aminophosphine precursor comparing to standard protocols involving (TMS) 3 P . The resulting InP/ZnS QDs exhibit emissions between 520 and 610 nm, narrow emission linewidths in the range of 46–64 nm and photoluminescence quantum yields up to 42%. 
    more » « less
  3. The utility of colloidal semiconductor quantum dots as a source of photons and charge carriers for photonic and photovoltaic applications has created a large field of research focused on tailoring and broadening their functionality beyond what an exciton can provide. One approach towards expanding the range of characteristics of photons and charge carriers from quantum dots is through doping impurity ions ( e.g. Mn 2+ , Cu + , and Yb 3+ ) in the host quantum dots. In addition to the progress in synthesis enabling fine control of the structure of the doped quantum dots, a mechanistic understanding of the underlying processes correlated with the structure has been crucial in revealing the full potential of the doped quantum dots as the source of photons and charge carriers. In this review, we discuss the recent progress made in gaining microscopic understanding of the photophysical pathways that give rise to unique dopant-related luminescence and the generation of energetic hot electrons via exciton-to-hot electron upconversion. 
    more » « less
  4. Abstract All‐inorganic CsPbI3quantum dots (QDs) have shown great potential in photovoltaic applications. However, their performance has been limited by defects and phase stability. Herein, an anion/cation synergy strategy to improve the structural stability of CsPbI3QDs and reduce the pivotal iodine vacancy (VI) defect states is proposed. The Zn‐doped CsPbI3(Zn:CsPbI3) QDs have been successfully synthesized employing ZnI2as the dopant to provide Zn2+and extra I. Theoretical calculations and experimental results demonstrate that the Zn:CsPbI3QDs show better thermodynamic stability and higher photoluminescence quantum yield (PLQY) compared to the pristine CsPbI3QDs. The doping of Zn in CsPbI3QDs increases the formation energy and Goldschmidt tolerance factor, thereby improving the thermodynamic stability. The additional Ihelps to reduce theVIdefects during the synthesis of CsPbI3QDs, resulting in the higher PLQY. More importantly, the synergistic effect of Zn2+and Iin CsPbI3QDs can prevent the iodine loss during the fabrication of CsPbI3QD film, inhibiting the formation of newVIdefect states in the construction of solar cells. Consequently, the anion/cation synergy strategy affords the CsPbI3quantum dot solar cells (QDSC) a power conversion efficiency over 16%, which is among the best efficiencies for perovskite QDSCs. 
    more » « less
  5. In this work, we investigated the effect of hole transporting poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) interfacing with Mn-doped CdS/ZnS quantum dots (QDs) deposited on an indium tin oxide (ITO) substrate on the photoemission of upconverted hot electrons under weak continuous wave photoexcitation in a vacuum. Among the various factors that can influence the photoemission of the upconverted hot electrons, we studied the role of PEDOT:PSS in facilitating the hole transfer from QDs and altering the energy of photoemitted hot electrons. Compared to hot electrons emitted from QDs deposited directly on the ITO substrate, the addition of the PEDOT:PSS layer between the QD and ITO layers increased the energy of the photoemitted hot electrons. The increased energy of the photoemitted hot electrons is attributed in part to the reduced steady-state positive charge on the QDs under continuous photoexcitation, which reduces the energy required to eject the electron from the conduction band. 
    more » « less