Abstract Plasmonic hot‐electron‐assisted control of emission intensities and dynamics of CdSe/ZnS and infrared PbS quantum dots are studied. This is done by exploring the impact of Au/Si and Ag/Si Schottky junctions on the decay rates of such quantum dots when these junctions are placed in close vicinity of a Si/Al oxide charge barrier, forming metal‐oxide plasmonic metafilms. Such structures are used to investigate how metal‐dependent distributions of hot electrons and their capture via Schottky junctions can lead to suppression of the defect environments of quantum dots, offering a novel platform wherein off‐resonant (non‐Purcell) plasmonic processes are used to control exciton dynamics. These results show that Ag metafilms can enhance the emission of CdSe/ZnS quantum dots and elongate their lifetimes more than Au metafilms. This highlights the more efficient nature of Ag/Si Schottky junctions for hot electron excitation and capture. These results also show that such junctions can significantly suppress the nonradiative decay rates of PbS quantum dots at frequencies far from the plasmon resonances. These results demonstrate a field‐effect passivation of quantum dot defects via entrapment of hot electrons and control of emission intensities and dynamics of quantum dots via the nearly frequency‐independent electrostatic field of such electrons.
more »
« less
Photons and charges from colloidal doped semiconductor quantum dots
The utility of colloidal semiconductor quantum dots as a source of photons and charge carriers for photonic and photovoltaic applications has created a large field of research focused on tailoring and broadening their functionality beyond what an exciton can provide. One approach towards expanding the range of characteristics of photons and charge carriers from quantum dots is through doping impurity ions ( e.g. Mn 2+ , Cu + , and Yb 3+ ) in the host quantum dots. In addition to the progress in synthesis enabling fine control of the structure of the doped quantum dots, a mechanistic understanding of the underlying processes correlated with the structure has been crucial in revealing the full potential of the doped quantum dots as the source of photons and charge carriers. In this review, we discuss the recent progress made in gaining microscopic understanding of the photophysical pathways that give rise to unique dopant-related luminescence and the generation of energetic hot electrons via exciton-to-hot electron upconversion.
more »
« less
- Award ID(s):
- 1804412
- PAR ID:
- 10173586
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 7
- Issue:
- 47
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 14788 to 14797
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron–phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge–charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices.more » « less
-
Fulop, Gabor F.; Kimata, Masafumi; Zheng, Lucy; Andresen, Bjørn F.; Miller, John Lester (Ed.)Colloidal semiconductor quantum dots/graphene van der Waals (vdW) heterojunctions take advantages of the enhanced light-matter interaction and spectral tenability of quantum dots (QDs) and superior charge mobility in graphene, providing a promising alternative for uncooled infrared photodetectors with a gain or external quantum efficiency up to 1010. In these QD/graphene vdW heterostructures, the QD/graphene interface plays a critical role in controlling the optoelectronic process including exciton dissociation, charge injection and transport. Specifically, charge traps at the vdW interface can increase the noise, reduce the responsivity and response speed. This paper highlight our recent progress in engineering the vdW heterojunction interface towards more efficient charge transfer for higher photoresponsivity, D* and response speed. These results illustrate that the importance in vdW heterojunction interface engineering in QD/graphene photodetectors which may provide a promising pathway for low-cost, printable and flexible infrared detectors and imaging systems.more » « less
-
Abstract A key obstacle for all quantum information science and engineering platforms is their lack of scalability. The discovery of emergent quantum phenomena and their applications in active photonic quantum technologies have been dominated by work with single atoms, self‐assembled quantum dots, or single solid‐state defects. Unfortunately, scaling these systems to many quantum nodes remains a significant challenge. Solution‐processed quantum materials are uniquely positioned to address this challenge, but the quantum properties of these materials have remained generally inferior to those of solid‐state emitters or atoms. Additionally, systematic integration of solution‐processed materials with dielectric nanophotonic structures has been rare compared to other solid‐state systems. Recent progress in synthesis processes and nanophotonic engineering, however, has demonstrated promising results, including long coherence times of emitted single photons and deterministic integration of emitters with dielectric nano‐cavities. In this review article, these recent experiments using solution‐processed quantum materials and dielectric nanophotonic structures are discussed. The progress in non‐classical light state generation, exciton‐polaritonics for quantum simulation, and spin‐physics in these materials is discussed and an outlook for this emerging research field is provided.more » « less
-
It is known that the spontaneous emission of semiconductor quantum dots is mostly unpolarized when they are excited off-resonantly. The complete loss of polarization memory is associated with the ultrafast carrier scattering, leading to complete spin polarization relaxation. We study the application of metal-oxide plasmonic double-junction structures to transfer the excitation polarization memory of quantum dots to their spontaneous emission. These structures consist of arrays of metallic nanoantennas in the presence of heterostructures consisting of Au/Si Schottky junctions and Si/Al-oxide charge barriers. Our results show that by using such double-junction structures, one can control the states of polarization and intensity of the emission of quantum dots using the state of polarization of an off-resonant laser field. For achieving this, we explore the optical control of exciton–plasmon coupling using optical lattice modes caused by the arrays of metallic nanoantennas, and the application of the electrostatic field generated by the hot electrons captured at the Au/Si Schottky junction.more » « less
An official website of the United States government

