skip to main content


Title: Novel superhard B–C–O phases predicted from first principles
We explored the B–C–O system at pressures in the range 0–50 GPa by ab initio variable-composition evolutionary simulations in the hope of discovering new stable superhard materials. A new tetragonal thermodynamically stable phase B 4 CO 4 , space group I 4̄, and two low-enthalpy metastable compounds (B 6 C 2 O 5 , B 2 CO 2 ) have been discovered. Computed phonons and elastic constants show that these structures are dynamically and mechanically stable both at high pressure and zero pressure. B 4 CO 4 is thermodynamically stable at pressures above 23 GPa, but should remain metastable under ambient conditions. Its computed hardness is about 38–41 GPa, which suggests that B 4 CO 4 is potentially superhard.  more » « less
Award ID(s):
1723160
NSF-PAR ID:
10094676
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
18
Issue:
3
ISSN:
1463-9076
Page Range / eLocation ID:
1859 to 1863
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the motivation of searching for new superconductors in the Mg–B system, we performed ab initio evolutionary searches for all the stable compounds in this binary system in the pressure range of 0–200 GPa. We found previously unknown, yet thermodynamically stable, compositions MgB 3 and Mg 3 B 10 . Experimentally known MgB 2 is stable in the entire pressure range 0–200 GPa, while MgB 7 and MgB 12 are stable at pressures below 90 GPa and 35 GPa, respectively. We predict a reentrant behavior for MgB 4 , which becomes unstable against decomposition into MgB 2 and MgB 7 at 4 GPa and then becomes stable above 61 GPa. We find ubiquity of phases with boron sandwich structures analogous to the AlB 2 -type structure. However, with the exception of MgB 2 , all other magnesium borides have low electron–phonon coupling constants λ of 0.32–0.39 and are predicted to have T c below 3 K. 
    more » « less
  2. Interest in Na-S compounds stems from their use in battery materials at 1 atm, as well as the potential for superconductivity under pressure. Evolutionary structure searches coupled with Density Functional Theory calculations were employed to predict stable and low-lying metastable phases of sodium poor and sodium rich sulfides at 1 atm and within 100–200 GPa. At ambient pressures, four new stable or metastable phases with unbranched sulfur motifs were predicted: Na2S3 with C 2 / c and Imm2 symmetry, C 2 -Na2S5 and C 2 -Na2S8. Van der Waals interactions were shown to affect the energy ordering of various polymorphs. At high pressure, several novel phases that contained a wide variety of zero-, one-, and two-dimensional sulfur motifs were predicted, and their electronic structures and bonding were analyzed. At 200 GPa, P 4 / m m m -Na2S8 was predicted to become superconducting below 15.5 K, which is close to results previously obtained for the β -Po phase of elemental sulfur. The structures of the most stable M3S and M4S, M = Na, phases differed from those previously reported for compounds with M = H, Li, K. 
    more » « less
  3. The high-pressure structure and stability of the calcic amphibole tremolite (Ca2Mg5Si8O22(OH)2) was investigated to ~40 GPa at 300 K by single-crystal X-ray diffraction using synchrotron radiation. C2/m symmetry tremolite displays a broader metastability range than previously studied clinoamphiboles, exhibiting no first-order phase transition up to 40 GPa. Axial parameter ratios a/b and a/c, in conjunction with finite strain versus normalized pressure trends, indicate that changes in compressional behavior occur at pressures of ~5 and ~20 GPa. An analysis of the finite strain trends, using third-order Birch-Murnaghan equations of state, resulted in bulk moduli (𝐾) of 72(7), 77(2), and 61(1) GPa for the compressional regimes from 0-5 GPa (regime I), 5-20 GPa (II), and above 20 GPa (III), respectively, and accompanying pressure-derivatives of the bulk moduli (𝐾′) of 8.6(42), 6.0(3), and 10.0(2). The results are consistent with first-principle theoretical calculations of tremolite elasticity. The axial compressibility ratios of tremolite, determined as 𝛽a : 𝛽b : 𝛽c = 2.22:1.0:0.78 (regime I), 2.12:1.0:0.96 (II), and 1.03:1.0:0.75 (III), demonstrate a substantial reduction of the compressional anisotropy of tremolite at high pressures, which is a notable contrast with the increasingly anisotropic compressibility observed in the high-pressure polymorphs of the clinoamphibole grunerite. The shift in compression-regime at 5 GPa (I-II) transition is ascribed to stiffening along the crystallographic a-axis corresponding to closure of the vacant A-site in the structure, and a shift in the topology of the a-oriented surfaces of the structural I-beam from concave to convex. The II-III regime shift at 20 GPa corresponds to an increasing rate of compaction of the Ca-polyhedra and increased distortion of the Mg-octahedral sites, processes which dictate compaction in both high-pressure compression-regimes. Bond-valence analyses of the tremolite structure under pressure show dramatic overbonding of the Ca-cations (75% at 30 GPa), with significant Mg-cation overbonding as well (40%). These imply that tremolite’s notable metastability range hinges on the calcium cation’s bonding environment. The 8-fold coordinated Ca-polyhedron accommodates significant compaction under pressure, while the geometry of the Ca-O polyhedron becomes increasingly regular and inhibits the reorientation of the tetrahedral chains that generate phase transitions observed in other clinoamphiboles. Peak/background ratio of diffraction data collected above 40 GPa and our equation of state determination of bulk moduli and compressibilities of tremolite in regime III, in concert with the results of our previous Raman study, suggest that C2/m tremolite may be approaching the limit of its metastability above 40 GPa. Our results have relevance for both the metastable compaction of tremolite during impact events, and for possible metastable persistence of tremolite within cold subduction zones within the Earth. 
    more » « less
  4. An emerging class of superhard materials for extreme environment applications are compounds formed by heavy transition metals with light elements. In this work, ultrahigh pressure experiments on transition metal rhenium diboride (ReB2) were carried out in a diamond anvil cell under isothermal and non-hydrostatic compression. Two independent high-pressure experiments were carried out on ReB2 for the first time up to a pressure of 241 GPa (volume compression V/V0 = 0.731 ± 0.004), with platinum as an internal pressure standard in X-ray diffraction studies. The hexagonal phase of ReB2 was stable under highest pressure, and the anisotropy between the a-axis and c-axis compression increases with pressure to 241 GPa. The measured equation of state (EOS) above the yield stress of ReB2 is well represented by the bulk modulus K0 = 364 GPa and its first pressure derivative K0´ = 3.53. Corresponding density-functional-theory (DFT) simulations of the EOS and elastic constants agreed well with the experimental data. DFT results indicated that ReB2 becomes more ductile with enhanced tendency towards metallic bonding under compression. The DFT results also showed strong crystal anisotropy up to the maximum pressure under study. The pressure-enhanced electron density distribution along the Re and B bond direction renders the material highly incompressible along the c-axis. Our study helps to establish the fundamental basis for anisotropic compression of ReB2 under ultrahigh pressures. 
    more » « less
  5. Abstract

    We build random forests models to predict elastic properties and mechanical hardness of a compound, using only its chemical formula as input. The model training uses over 10,000 target compounds and 60 features based on stoichiometric attributes, elemental properties, orbital occupations, and ionic bonding levels. Using the models, we construct triangular graphs for B-C-N compounds to map out their bulk and shear moduli, as well as hardness values. The graphs indicate that a 1:1 B-N ratio can lead to various superhard compositions. We also validate the machine learning results by evolutionary structure prediction and density functional theory. Our study shows that BC10N, B4C5N3, and B2C3N exhibit dynamically stable phases with hardness values >40 GPa, which are superhard materials that potentially could be synthesized by low-temperature plasma methods.

     
    more » « less