skip to main content


Title: Machine learning and evolutionary prediction of superhard B-C-N compounds
Abstract

We build random forests models to predict elastic properties and mechanical hardness of a compound, using only its chemical formula as input. The model training uses over 10,000 target compounds and 60 features based on stoichiometric attributes, elemental properties, orbital occupations, and ionic bonding levels. Using the models, we construct triangular graphs for B-C-N compounds to map out their bulk and shear moduli, as well as hardness values. The graphs indicate that a 1:1 B-N ratio can lead to various superhard compositions. We also validate the machine learning results by evolutionary structure prediction and density functional theory. Our study shows that BC10N, B4C5N3, and B2C3N exhibit dynamically stable phases with hardness values >40 GPa, which are superhard materials that potentially could be synthesized by low-temperature plasma methods.

 
more » « less
Award ID(s):
1655280
NSF-PAR ID:
10277973
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
7
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We search for new superhard B-N-O compounds with an iterative machine learning (ML) procedure, where ML models are trained using sample crystal structures from evolutionary algorithm. We first use cohesive energy to evaluate the thermodynamic stability of varying BxNyOz compositions, and then gradually focus on compositional regions with high cohesive energy and high hardness. The results converge quickly after a few iterations. Our resulting ML models show that Bx+2NxO3 compounds with x≥3 (like B5N3O3, B6N4O3, etc.) are potentially superhard and thermodynamically favorable. Our meta-GGA density functional theory calculations indicate that these materials are also wide bandgap (≥4.4 eV) insulators, with the valence band maximum related to the p-orbitals of nitrogen atoms near vacant sites. This study demonstrates that an iterative method combining ML and ab initio simulations provides a powerful tool for discovering novel materials. 
    more » « less
  2. Discovering new materials with desired properties has been a dominant and crucial topic of interest in the field of materials science in the past few decades. In this work, novel carbon allotropes and ternary B–C–N structures were generated using the state-of-the-art RG 2 code. All structures were fully optimized using density functional theory with first-principles calculations. Several hundred carbon allotropes and ternary B–C–N structures were identified to be superhard materials. The thermodynamic stability of some randomly selected superhard materials was confirmed by evaluating the full phonon dispersions in the Brillouin zone. The new carbon allotropes and ternary B–C–N structures possess a wide range of mechanical properties generally and Vickers hardness specifically. Through 2D Pearson's correlation map, we first reproduced the well-accepted explanation and relationship of the Vickers hardness of the generated structures with other mechanical properties such as shear modulus, bulk modulus, Pugh's ratio, universal anisotropy, and Poisson's ratio. We then propose two fundamentally new descriptors from the electronic level, namely local potential and electron localization function averaged over a unit cell, both of which exhibit a strong correlation with Vickers hardness. More importantly, these descriptors are easy to access from first-principles calculations (at least two orders of magnitude faster than the traditional calculation of elastic constants), and thus can serve as a fast and accurate approach for screening superhard materials. We also combined these new descriptors with known composition and structural descriptors in the machine learning training process. The new descriptors significantly enhance the performance of the trained machine learning model in predicting the Vickers hardness of unknown materials, which provides strong evidence for local potential and electron localization function to be considered in future high-throughput computation. This work unravels more fundamental but previously unexplored knowledge about superhard materials and the newly proposed electronic level descriptors are expected to accelerate the discovery of new superhard materials. 
    more » « less
  3. Abstract

    The search for new superhard materials is of great interest for extreme industrial applications. However, the theoretical prediction of hardness is still a challenge for the scientific community, given the difficulty of modeling plastic behavior of solids. Different hardness models have been proposed over the years. Still, they are either too complicated to use, inaccurate when extrapolating to a wide variety of solids or require coding knowledge. In this investigation, we built a successful machine learning model that implements Gradient Boosting Regressor (GBR) to predict hardness and uses the mechanical properties of a solid (bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio) as input variables. The model was trained with an experimental Vickers hardness database of 143 materials, assuring various kinds of compounds. The input properties were calculated from the theoretical elastic tensor. The Materials Project’s database was explored to search for new superhard materials, and our results are in good agreement with the experimental data available. Other alternative models to compute hardness from mechanical properties are also discussed in this work. Our results are available in a free-access easy to use online application to be further used in future studies of new materials atwww.hardnesscalculator.com.

     
    more » « less
  4. Abstract

    The structures of zinc carbene ZnCH2and zinc carbyne HZnCH, and the conversion transition states between them are optimized at B3LYP/aug‐cc‐pVTZ, MP2/aug‐cc‐pVTZ, and CCSD/aug‐cc‐pVTZ levels of theory. The thermodynamic energies with CCSD(T) method are further extrapolated to basis set limit through a series of basis sets of aug‐cc‐pVXZ (X=D, T, Q, 5). The Zn−C bonding characteristics are interpreted by molecular plots, Laplacian of density plots, the integrated delocalization indices, net atomic charges, and derived atomic hardness. On the one hand, the studies demonstrated the efficiency of DFT method in structure optimizations and the accuracy of CBS method in obtaining thermodynamic energies; On the other hand, the density analysis of CCSD/aug‐cc‐pVDZ density demonstrates that both the sharing interaction and ionic interaction are important in ZnCH2ad HZnCH. The3B1state of ZnCH2is the global minimum and formed in visible light, but its small bond dissociation energy (47.0 kcal/mol) cannot keep the complex intact under UV light (79.4–102.1 kcal/mol). However, the3Σstate of HZnCH can survive the UV light due to the greater Zn−C dissociation energy (100.7 kcal/mol). The delocalization indices of Zn…C in both3B1of ZnCH2(0.777) and the3Σstate of HZnCH (0.785) are close to the delocalization index of the single C−C bond of ethane (0.841), i. e. the nomenclature of Zinc carbene and Zinc carbyne is incorrect. The stronger Zn−C bond in the3Σstate of HZnCH than in the3B1state of ZnCH2can be attributed to the larger charge separation in the former. It was found that the Zn−C bonds in related Zinc organic compounds were also single bonds no matter whether the organic groups are CR, CR2, or CR3. The ionic interactions were discussed in terms of the atomic hardness that were in turn related to ionization energy and electron affinity. The unique combination of covalent and ionic characteristics in the Zn−C bonds of organic Zinc compounds could be the origin of many interesting applications of organic Zinc reagents.

     
    more » « less
  5. Abstract Highlights

    Thermal property values for a range ofθandρbwere measured on undisturbed soil cores.

    Freshly tilled soil thermal property values were quite dynamic temporally.

    The thermal property values of a tilled soil were described as 3‐D surfaces withθandρb.

    The thermal property values of a tilled soil varied linearly withnair.

     
    more » « less