skip to main content


Title: Pyridinol-based CNC Pincer catalysts for carbon dioxide reduction: The big impact of one small remote group
The first examples of a CNC pincer ligands with a central pyridinol derived ring were recently reported.  The differences in catalytic reactivity between CNC ligands with a central pyridine ring vs. a pyridinol derived ring are substantial and highly active and robust catalysts have been synthesized and studied.  In these pincer ligands, the 4-substituent can be OMe, OH, or O-, and these latter two options allow for altered catalyst properties as a function of proton concn.  Catalytic studies have used ruthenium(II), nickel(II), and other transition metals.  We have made metal complexes that can be protonated or deprotonated reversibly in situ to switch on or off the photocatalytic performance towards CO2 redn.  Furthermore, the methoxy group on the pyridine ring offers unique catalysis advantages not seen with the unsubstituted analog.  Our best catalysts offer selective CO formation, >300 turnover cycles, and a 40 h lifetime.  Steric and electronic ligand effects are being studied with these catalysts by exptl. and computational methods.  more » « less
Award ID(s):
1800214
NSF-PAR ID:
10094753
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Southeastern Regional Meeting of the ACS
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The first examples of a CNC pincer ligands with a central pyridinol derived ring were recently reported.  The differences in catalytic reactivity between CNC ligands with a central pyridine ring vs. a pyridinol derived ring are substantial and highly active and robust catalysts have been synthesized and studied.  In these pincer ligands, the 4-substituent can be OMe, OH, or O , and these latter two options allow for altered catalyst properties as a function of proton concn.  Catalytic studies have used ruthenium(II), nickel(II), and other transition metals.  We have made metal complexes that can be protonated or deprotonated reversibly in situ to switch on or off the photocatalytic performance towards CO redn.  Furthermore, the methoxy group on the pyridine ring offers unique catalysis advantages not seen with the unsubstituted analog.  Our best catalysts offer selective CO formation, >300 turnover cycles, and a 40 h lifetime.  Highly active self-sensitized catalysts have recently been developed.  Steric and electronic ligand effects are being studied with these catalysts by exptl. and computational methods. 
    more » « less
  2. Abstract

    A new method to synthesize complexes of the type [(CNC)RuII(NN)L]n+has been introduced, where CNC is a tridentate pincer composed of two (benz)imidazole derived NHC rings and a pyridyl ring, NN is a bidentate aromatic diimine ligand, L=bromide or acetonitrile, and n=1 or 2. Following this new method a series of six new complexes has been synthesized and characterized by spectroscopic, analytic, crystallographic, and computational methods. Their electrochemical properties have been studiedviacyclic voltammetry under both N2and CO2atmospheres. Photocatalytic reduction of CO2to CO was performed using these complexes both in the presence (sensitized) and absence (self‐sensitized) of an external photosensitizer. This study evaluates the effect of different CNC, NN, and L ligands in sensitized and self‐sensitized photocatalysis. Catalysts bearing the benzimidazole derived CNC pincer show much better activity for both sensitized and self‐sensitized photocatalysis as compared to catalysts bearing the imidazole derived CNC pincer. Furthermore, self‐sensitized photocatalysis requires a diimine ligand for CO2reduction with catalyst2ACNbeing the most active catalyst in this series with TON=85 and TOF=22 h−1with an electron donating 4,4′‐dimethyl‐2,2′‐bipyridyl (dmb) ligand and a benzimidazole derived CNC pincer.

     
    more » « less
  3. Although N-heterocyclic carbenes (NHCs) have been known as ligands for organometallic complexes since the 1960s, these carbenes did not attract considerable attention until Arduengo et al. reported the isolation of a metal-free imidazol-2-ylidene in 1991. In 2001 Crabtree et al. reported a few complexes featuring an NHC isomer, namely an imidazol-5-ylidene, also termed abnormal NHC (aNHCs). In 2009, it was shown that providing to protect the C-2 position of an imidazolium salt, the deprotonation occurred at the C-5 position, affording imidazol-5-ylidenes that could be isolated. Over the last ten years, stable aNHCs have been used for designing a range of catalysts employing Pd( ii ), Cu( i ), Ni( ii ), Fe(0), Zn( ii ), Ag( i ), and Au( i / iii ) metal based precursors. These catalysts were utilized for different organic transformations such as the Suzuki–Miyaura cross-coupling reaction, C–H bond activation, dehydrogenative coupling, Huisgen 1,3-dipolar cycloaddition (click reaction), hydroheteroarylation, hydrosilylation reaction and migratory insertion of carbenes. Main-group metal complexes were also synthesized, including K( i ), Al( iii ), Zn( ii ), Sn( ii ), Ge( ii ), and Si( ii / iv ). Among them, K( i ), Al( iii ), and Zn( ii ) complexes were used for the polymerization of caprolactone and rac -lactide at room temperature. In addition, based on the superior nucleophilicity of aNHCs, relative to that of their nNHCs isomers, they were used for small molecules activation, such as carbon dioxide (CO 2 ), nitrous oxide (N 2 O), tetrahydrofuran (THF), tetrahydrothiophene and 9-borabicyclo[3.3.1]nonane (9BBN). aNHCs have also been shown to be efficient metal-free catalysts for ring opening polymerization of different cyclic esters at room temperature; they are among the most active metal-free catalysts for ε-caprolactone polymerization. Recently, aNHCs successfully accomplished the metal-free catalytic formylation of amides using CO 2 and the catalytic reduction of carbon dioxide, including atmospheric CO 2 , into methanol, under ambient conditions. Although other transition metal complexes featuring aNHCs as ligand have been prepared and used in catalysis, this review article summarize the results obtained with the isolated aNHCs. 
    more » « less
  4. Abstract

    BulkyN,N’‐bidentate ligands can furnish catalysts with enhanced catalytic activity compared to commercially available ligands. Straightforward methods to effectively synthesize a broad range of these ligands, however, are uncommon. In this work, a simple and efficient method is developed for the synthesis of bulkyN,N’‐bidentate ligands, including 2,2’‐bipyridines and enantioenriched pyridine‐oxazolines. The Pd/NIXANTPHOS catalyst system enabled synthesis of a series of bulky 2,2’‐bipyridine‐based ligands and (S)‐pyridine oxazoline‐based enantioenriched ligands with good to excellent yields. The ligands have been benchmarked in the aminofluorination of styrene.

    magnified image

     
    more » « less
  5. The insertion of carbon dioxide into metal element σ-bonds is an important elementary step in many catalytic reactions for carbon dioxide valorization. Here, the insertion of carbon dioxide into a family of group 10 alkyl complexes of the type ( R PBP)M(CH 3 ) ( R PBP = B(NCH 2 PR 2 ) 2 C 6 H 4 − ; R = Cy or t Bu; M = Ni or Pd) to generate κ 1 -acetate complexes of the form ( R PBP)M{OC(O)CH 3 } is investigated. This involved the preparation and characterization of a number of new complexes supported by the unusual R PBP ligand, which features a central boryl donor that exerts a strong trans -influence, and the identification of a new decomposition pathway that results in C–B bond formation. In contrast to other group 10 methyl complexes supported by pincer ligands, carbon dioxide insertion into ( R PBP)M(CH 3 ) is facile and occurs at room temperature because of the high trans -influence of the boryl donor. Given the mild conditions for carbon dioxide insertion, we perform a rare kinetic study on carbon dioxide insertion into a late-transition metal alkyl species using ( t Bu PBP)Pd(CH 3 ). These studies demonstrate that the Dimroth–Reichardt parameter for a solvent correlates with the rate of carbon dioxide insertion and that Lewis acids do not promote insertion. DFT calculations indicate that insertion into ( t Bu PBP)M(CH 3 ) (M = Ni or Pd) proceeds via an S E 2 mechanism and we compare the reaction pathway for carbon dioxide insertion into group 10 methyl complexes with insertion into group 10 hydrides. Overall, this work provides fundamental insight that will be valuable for the development of improved and new catalysts for carbon dioxide utilization. 
    more » « less