Small molecular NIR‐II dyes are highly desirable for various biomedical applications. However, NIR‐II probes are still limited due to the complex synthetic processes and inadequate availability of fluorescent core. Herein, the design and synthesis of three small molecular NIR‐II dyes are reported. These dyes can be excited at 850–915 nm and emitted at 1280–1290 nm with a large stokes shift (≈375 nm). Experimental and computational results indicate a 2:1 preferable host–guest assembly between the cucurbit[8]uril (CB) and dye molecules. Interestingly, the dyes when self‐assembled in presence of CB leads to the formation of nanocubes (≈200 nm) and exhibits marked enhancement in fluorescence emission intensity (Switch‐On). However, the addition of red carbon dots (rCDots, ≈10 nm) quenches the fluorescence of these host–guest complexes (Switch‐Off) providing flexibility in the user‐defined tuning of photoluminescence. The turn‐ON complex found to have comparable quantum yield to the commercially available near‐infrared fluorophore, IR‐26. The aqueous dispersibility, cellular and blood compatibility, and NIR‐II bioimaging capability of the inclusion complexes is also explored. Thus, a switchable fluorescence behavior, driven by host–guest complexation and supramolecular self‐assembly, is demonstrated here for three new NIR‐II dyes.
- Award ID(s):
- 1708240
- PAR ID:
- 10094768
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 23
- Issue:
- 9
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 2229
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Strong‐binding host–guest pairings in aqueous media have potential as “supramolecular glues” in biomedical techniques, complementing the widely‐used (strept)avidin‐biotin combination. We have previously found that squaraine dyes are bound very strongly by tetralactam macrocycles possessing anthracenyl units as cavity walls. Here we show that replacing the anthracenes with pentacyclic 5,7,12,14‐tetrahydro‐5,7,12,14‐tetraoxapentacene (TOP) units generates receptors which bind squaraines with increased affinities (around
K a=1010m −1) and improved selectivities. Binding can be followed through changes to squaraine fluorescence and absorbance. The TOP units are easy to prepare and potentially variable, while the TOP‐based receptor shows improved photostability, both in itself and in complex with squaraines. The results suggest that this system could prove valuable in the further development of practical “synthavidin” chemistry. -
Abstract Strong‐binding host–guest pairings in aqueous media have potential as “supramolecular glues” in biomedical techniques, complementing the widely‐used (strept)avidin‐biotin combination. We have previously found that squaraine dyes are bound very strongly by tetralactam macrocycles possessing anthracenyl units as cavity walls. Here we show that replacing the anthracenes with pentacyclic 5,7,12,14‐tetrahydro‐5,7,12,14‐tetraoxapentacene (TOP) units generates receptors which bind squaraines with increased affinities (around
K a=1010m −1) and improved selectivities. Binding can be followed through changes to squaraine fluorescence and absorbance. The TOP units are easy to prepare and potentially variable, while the TOP‐based receptor shows improved photostability, both in itself and in complex with squaraines. The results suggest that this system could prove valuable in the further development of practical “synthavidin” chemistry. -
Abstract The design of bright, high quantum yield (QY) materials in the near‐infrared (NIR) spectral region in water remains a significant challenge. A series of cyanine and squaraine dyes varying water solubilizing groups and heterocycles are studied to probe the interactions of these groups with albumin in water. Unprecedented, ′ultra‐bright′ emission in water is observed for a sulfonate indolizine squaraine dye (61.1 % QY) and a sulfonate indolizine cyanine dye (46.7 % QY) at NIR wavelengths of >700 nm and >800 nm, respectively. The dyes presented herein have a lower limit of detection than the most sensitive dyes known in the NIR region for albumin detection by at least an order of magnitude, which enables more sensitive diagnostic testing. Additionally, biotinylated human serum albumin complexed with the dyes reported herein was observed to function as an immunohistochemical reagent enabling high resolution imaging of cellular α‐tubulin at low dye concentrations.
-
Cell death is a central process in developmental biology and also an important indicator of disease status and treatment efficacy. Two related fluorescent probes are described that are molecular conjugates of one or two zinc dipicolylamine (ZnDPA) coordination complexes with an appended solvatochromic benzothiazolium squaraine dye. The probes were designed to target the anionic phospholipid, phosphatidylserine (PS), that is exposed on the surface of dead and dying cells. A series of spectrometric and microscopy studies using liposomes and red blood cell ghosts as models showed that the probe with two ZnDPA targeting units produced higher affinity, stronger fluorescence “turn-on” effect, and better image contrast than the probe with one ZnDPA. Both fluorescent probes enabled “no-wash” time-lapse microscopic imaging of mammalian cell death within a culture. The probe with two ZnDPA units was used for non-invasive time-lapse imaging of cell death during the development of Xenopus laevis (frog) embryos. In vivo fluorescence micrographs revealed probe accumulation within the embryo tail, head and spine regions that were undergoing regression and apoptosis during growth and maturation. These new fluorescent probes are likely to be useful for time-resolved, non-invasive in vivo imaging of cell death process in range of living organisms. From a broader perspective, it should be possible to utilize the negative solvatochromism exhibited by benzothiazolium squaraine dyes for development of various “turn-on” deep-red fluorescent probes and materials that target cell surface biomarkers for in vitro and in vivo imaging.more » « less