skip to main content


Title: ADAPTIVE REUSE OF FRP COMPOSITE WIND TURBINE BLADES FOR CIVIL INFRASTRUCTURE CONSTRUCTION
The rapid growth in wind energy technology has led to an increase in the amount of thermosetting FRP composite materials used in wind turbine blades that will need to be recycled or disposed of in the near future. Calculations show that 4.2 million tons of waste from wind blades will need to be managed globally by 2035, increasing to 16.3 million tons by 2055. Three waste management route are possible: disposal, recycling or reusing. Currently, most FRP composites taken out of service are disposal of in landfills or are incinerated. Recycling options consist of reclamation of the constituent fibers or the resins by thermo–chemical methods or recycling of small pieces of granular FRP material as filler material by cutting, shredding or grinding. Reuse options consist of reusing the entire FRP blade or large parts of the blade in new structural applications. This paper reports on the potential for reusing parts of wind turbine blades in new or retrofitted architectural and civil infrastructure projects. The paper introduces the geometry, materials, and laminates typically used in wind blades and provides a snapshot of the sizes of wind blades likely to be available from the inventory of active turbines. Because the materials and manufacturing of commercial wind blades are proprietary, generic blade geometries and materials are discussed. These come from the Sandia National Laboratory and National Renewable Energy Laboratory, in the United States, and from OPTIMAT in the European Union. The paper presents a method for generating the geometry and material properties of structural elements cut from wind blades, using the Numerical Manufacturing and Design Tool (NUMAD), published by the Sandia National Laboratory.  more » « less
Award ID(s):
1701694 1949818
NSF-PAR ID:
10097342
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Composites in Civil Engineering CICE 2018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapid growth in wind energy technology has led to an increase in the amount of thermosetting FRP composite materials used in wind turbine blades that will need to be recycled or disposed of in the near future. Calculations show that 16.8 million tons of waste from wind blades will need to be managed globally by 2030, increasing to 39.8 million tons by 2050. Three waste management route are possible: disposal, recycling or reusing. Currently, most FRP composites taken out of service are disposal of in landfills or are incinerated. Recycling options consist of reclamation of the constituent fibers or the resins by thermo–chemical methods or recycling of small pieces of granular FRP material as filler material by cutting, shredding or grinding. Reuse options consist of reusing the entire FRP blade or large parts of the blade in new structural applications. This paper reports on the potential for reusing parts of wind turbine blades in new or retrofitted architectural and civil infrastructure projects. The paper introduces the geometry, materials, and laminates typically used in wind blades and provides a snapshot of the sizes of wind blades likely to be available from the inventory of active turbines. Because the materials and manufacturing of commercial wind blades are proprietary, generic blade geometries and materials are discussed. These come from the Sandia National Laboratory and National Renewable Energy Laboratory, in the United States, and from OPTIMAT in the European Union. The paper presents an example of the geometry and material properties of structural elements cut from wind blades, using the Numerical Manufacturing and Design Tool (NUMAD), published by the Sandia National Laboratory. 
    more » « less
  2. The very rapid growth in wind energy technology in the last 15 years has led to a rapid growth in the amount of non–biodegradable, thermosetting FRP composite materials used in wind turbine blades that will need to be managed of in the near future. A typical 2.0 MW turbine with three 50 m blades has approximately 20 tonnes of FRP material and an 8 MW turbine has approximately 80 tonnes of FRP material (1 MW ~ 10 tonnes of FRP). Calculations show that 4.2 million tonnes will need to be managed globally by 2035 and 16.3 million tonnes by 2055 if wind turbine construction continues at current levels and with current technology. Three major categories of end-of-life (EOL) options are possible – disposal, recovery and reuse. Reuse options are the primary focus of this paper since landfilling and incineration are environmentally harmful and recovery recycling methods are not economical. The current work reports on different architectural and structural options for reusing parts of wind turbine blades in new or retrofitted housing projects. Large-sized FRP pieces that can be salvaged from the turbine blades and potentially useful in infrastructure projects where harsh environmental conditions (water and high humidity) exist. Their noncorrosive properties make them durable construction materials. The approach presented is to cut the decommissioned wind turbine blades into segments that can be repurposed for structural and architectural applications for affordable housing projects. The geographical focus of the designs presented in this paper is in the coastal region of the Yucatan on the Gulf of Mexico where low quality masonry block informal housing is vulnerable to severe hurricanes and flooding. In what follows, a prototype 100m long wind blade model provided by Sandia National Laboratories is used as a demonstration to show how a wind blade can be broken down into parts, thus making it possible to envision architectural applications for the different wind blade segments. 
    more » « less
  3. This paper discusses the opening moves of an international multidisciplinary research project involving researchers from Ireland, Northern Ireland and the US, aiming to address the global problem of end-of-life disposal of wind turbine blades. The problem is one of enormous scale on several levels: a typical 2.0 MW turbine has three 50m long blades containing around 20 tonnes of fibre reinforced plastic (FRP). It is estimated that by 2050, 39.8 million tonnes of material from the global wind industry will await disposal. Whilst land-fill is the current means of disposal, the nature of the materials used in the composite construction of wind blades (glass and carbon fibres, resins, foams) means it unsustainable. Hence, the project sets out to deploy innovative design and logistical concepts for reusing and recycling these blades. The project begins within an innovative joint design studio, staged between Queen’s University Belfast and the Georgia Institute of Technology, where architecture students will, within the highly-constrained contexts of the blade properties and the potential reuse sites, systematically generate, filter, and prototype a selection of proposals, reusing the decommissioned wind turbine blades in buildings, infrastructure, landscape, and public art. The paper analyzes the potential and challenges of considering this highly constrained and yet multidisciplinary problem within the context of a Masters level Architecture studio. The paper concludes with an analysis of how outcome-driven design problems challenge traditional design studio cultures, acknowledging the need to make processes and ideas more explicit in order to categorise, analyse, rank and refine proposed architectural solutions. 
    more » « less
  4. In recent years, the sustainability of wind power has been called into question because there are currently no truly sustainable solutions to the problem of how to deal with the non-biodegradable fibre-reinforced polymer (FRP) composite wind blades (sometimes referred to as “wings”) that capture the wind energy. The vast majority of wind blades that have reached their end-of-life (EOL) currently end up in landfills (either in full-sized pieces or pulverized into smaller pieces) or are incinerated. The problem has come to a head in recent years since many countries (especially in the EU) have outlawed, or expect to outlaw in the near future, one or both of these unsustainable and polluting disposal methods. An increasing number of studies have addressed the issue of EOL blade “waste”; however, these studies are generally of little use since they make predictions that do not account for the manner in which wind blades are decommissioned (from the time the decision is made to retire a turbine (or a wind farm) to the eventual disposal or recycling of all of its components). This review attempts to lay the groundwork for a better understanding of the decommissioning process by defining how the different EOL solutions to the problem of the blade “waste” do or do not lead to “sustainable decommissioning”. The hope is that by better defining the different EOL solutions and their decommissioning pathways, a more rigorous research base for future studies of the wind blade EOL problem will be possible. This paper reviews the prior studies on wind blade EOL and divides them into a number of categories depending on the focus that the original authors chose for their EOL assessment. This paper also reviews the different methods chosen by researchers to predict the quantities of future blade waste and shows that depending on the choice of method, predictions can be different by orders of magnitude, which is not good as this can be exploited by unscrupulous parties. The paper then reviews what different researchers define as the “recycling” of wind blades and shows that depending on the definition, the percentage of how much material is actually recycled is vastly different, which is also not good and can be exploited by unscrupulous parties. Finally, using very recent proprietary data (December 2022), the paper illustrates how the different definitions and methods affect predictions on global EOL quantities and recycling rates.

     
    more » « less
  5. This paper presents a method for the digital reconstruction of the geometry of a wind turbine blade from a point-cloud model to polysurface model. The digital reconstruction of the blade geometry is needed to develop computer models that can be used by architects and engineers to design and analyze blade parts for reuse and recycling of decommissioned wind turbine blades. Initial studies of wind-blade geometry led to the creation of an airfoil database that stores the normalized coordinates of publicly-available airfoil profiles. A workflow was developed in which these airfoil profiles are best-fitted to targeted cross-sections of point-cloud representations of a blade. The method for best-fitting airfoil curves is optimized by minimizing the distance between points sampled on the curve and point-cloud cross section. To demonstrate the workflow, a digitally-created point-cloud model of a 100 m blade developed by Sandia National Laboratory was used to test the reconstruction routine. 
    more » « less