skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comment on “Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance”
Recently, Santos et al. published an article titled “Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance” in ACS Nano. In this article it was claimed that crystalline amino acid enantiomers can give rise to 1H-15N and 1H-13C cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra with different relative signal intensities. The authors attributed such differences to transient changes in T1 relaxation times resulting from an interaction between the electron spins and the radiofrequency contact pulses used in the CPMAS experiment, and discussed this proposed phenomenon in terms of the chirality-induced spin selectivity (CISS) effect. We disagree with the authors conclusion that the CISS effect plays a role in the different signal intensities observed in the CPMAS solid-state NMR spectra of crystalline enantiomers. Quantitative 13C CPMAS experiments on aspartic acid enantiomers demonstrate that CPMAS signal variations can likely be attributed to sample dependent differences in T1 relaxation times rather than any chirality effects.  more » « less
Award ID(s):
1709972
PAR ID:
10094913
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACS nano
ISSN:
1936-0851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Overhauser dynamic nuclear polarization (ODNP) NMR of solutions at high fields is usually mediated by scalar couplings that polarize the nuclei of heavier, electron-rich atoms. This leaves 1H-detected NMR outside the realm of such studies. This study presents experiments that deliver 1H-detected NMR experiments on relatively large liquid volumes (60 ∼ 100 μL) and at high fields (14.1 T), while relying on ODNP enhancements. To this end 13C NMR polarizations were first enhanced by relying on a mechanism that utilizes e--13C scalar coupling interactions; the nuclear spin alignment thus achieved was then passed on to neighboring 1H for observation, by a reverse INEPT scheme relying on one-bond JCH-couplings. Such 13C 1H polarization transfer ported the 13C ODNP gains into the 1H, permitting detection at higher frequencies and with higher potential sensitivities. For a model solution of labeled 13CHCl3 comixed with a nitroxide-based TEMPO derivative as polarizing agent, an ODNP enhancement factor of ca. 5x could thus be imparted to the 1H signal. When applied to bigger organic molecules like 2-13C-phenylacetylene and 13C8-indole, ODNP enhancements in the 1.2-3x range were obtained. Thus, although handicapped by the lower γ of the 13C, enhancements could be imparted on the 1H thermal acquisitions in all cases. We also find that conventional 1H–13C nuclear Overhauser enhancements (NOEs) are largely absent in these solutions due to the presence of co-dissolved radicals, adding negligible gains and playing negligible roles on the scalar e-→13C ODNP transfer. Potential rationalizations of these effects as well as extensions of these experiments, are briefly discussed. 
    more » « less
  2. Chirality-induced spin selectivity (CISS) is a recently discovered effect in which structural chirality can result in different conductivities for electrons with opposite spins. In the CISS community, the degree of spin polarization is commonly used to describe the efficiency of the spin filtering/polarizing process, as it represents the fraction of spins aligned along the chiral axis of chiral materials originating from non-spin-polarized currents. However, the methods of defining, calculating, and analyzing spin polarization have been inconsistent across various studies, hindering advances in this field. In this Perspective, we connect the relevant background and the definition of spin polarization, discuss its calculation in different contexts in CISS, and propose a practical and meaningful figure of merit for quantitative analyses in CISS. 
    more » « less
  3. Dynamic Nuclear Polarization (DNP) utilizing Electron Spin Clusters to achieve resonance matching with the nucleus and to generate an Asymmetric Polarization Elevation (ESCAPE-DNP, or ESC-DNP for short) by monochromatic microwave irradiation at a select frequency is debuted as a promising mechanism to achieve NMR signal enhancements with a wide design scope requiring low microwave power at high magnetic field. In this paper, we present the design for a trityl-based tetra-radical (TetraTrityl) to achieve DNP for 1H NMR at 7 Tesla, supported by experimental data and quantum mechanical simulations. A slow relaxing (T1e ≈ 1 ms) four electron spin cluster is found to require at least two electron pairs with e-e distances of 8 Å or below to yield any meaningful 1H ESC-DNP NMR enhancement, while squeezing the rest of the e-e distances to 12 Å or below gives rise to near maximum 1H ESC-DNP-NMR enhancements. For the more common case of a fast-relaxing spin cluster (T1e ≈ 1 μs), efficient ESC-DNP is found to require an asymmetric ESC that contains a cluster of strongly coupled narrow-line radicals coexisting with a weakly coupled narrow-line radical acting as a sensitizer to extract polarization from the cluster. This study highlights the untapped potential of utilizing strong coupling of narrow-line radical clusters to achieve microwave power-efficient DNP that extends design options beyond what is available today and offers great tunability at high magnetic field. 
    more » « less
  4. Abstract Over the past two decades, the chirality‐induced spin selectivity (CISS) effect was reported in several experiments disclosing a unique connection between chirality and electron spin. Recent theoretical works highlighted time‐resolved Electron Paramagnetic Resonance (trEPR) as a powerful tool to directly detect the spin polarization resulting from CISS. Here, we report a first attempt to detect CISS at the molecular level by linking the pyrene electron donor to the fullerene acceptor with chiral peptide bridges of different length and electric dipole moment. The dyads are investigated by an array of techniques, including cyclic voltammetry, steady‐state and transient optical spectroscopies, and trEPR. Despite the promising energy alignment of the electronic levels, our multi‐technique analysis reveals no evidence of electron transfer (ET), highlighting the challenges of spectroscopic detection of CISS. However, the analysis allows the formulation of guidelines for the design of chiral organic model systems suitable to directly probe CISS‐polarized ET. 
    more » « less
  5. Spin polarization in chiral molecules is a magnetic molecular response associated with electron transport and enantioselective bond polarization that occurs even in the absence of an external magnetic field. An unexpected finding by Santos and co-workers reported enantiospecific NMR responses in solid-state cross-polarization (CP) experiments, suggesting a possible additional contribution to the indirect nuclear spin-spin coupling in chiral molecules induced by bond polarization in the presence of spin-orbit coupling. Herein we provide a theoretical treatment for this phenomenon, presenting an effective spin-Hamiltonian for helical molecules like DNA and density functional theory (DFT) results on amino acids that confirm the dependence of J-couplings on the choice of enantiomer. The connection between nuclear spin dynamics and chirality could offer insights for molecular sensing and quantum information sciences. These results establish NMR as a potential tool for chiral discrimination without external agents. 
    more » « less