skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spin Polarization in Transport Studies of Chirality-Induced Spin Selectivity
Chirality-induced spin selectivity (CISS) is a recently discovered effect in which structural chirality can result in different conductivities for electrons with opposite spins. In the CISS community, the degree of spin polarization is commonly used to describe the efficiency of the spin filtering/polarizing process, as it represents the fraction of spins aligned along the chiral axis of chiral materials originating from non-spin-polarized currents. However, the methods of defining, calculating, and analyzing spin polarization have been inconsistent across various studies, hindering advances in this field. In this Perspective, we connect the relevant background and the definition of spin polarization, discuss its calculation in different contexts in CISS, and propose a practical and meaningful figure of merit for quantitative analyses in CISS.  more » « less
Award ID(s):
2004238
PAR ID:
10600722
Author(s) / Creator(s):
;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Nano
Volume:
17
Issue:
20
ISSN:
1936-0851
Page Range / eLocation ID:
19502 to 19507
Subject(s) / Keyword(s):
chirality-induced spin selectivity, spin polarization, transport, spin-valve, magnetic tunnel junction, magnetoresistance
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electrical generation and transduction of polarized electron spins in semiconductors (SCs) are of central interest in spintronics and quantum information science. While spin generation in SCs is frequently realized via electrical injection from a ferromagnet (FM), there are significant advantages in nonmagnetic pathways of creating spin polarization. One such pathway exploits the interplay of electron spin with chirality in electronic structures or real space. Here, utilizing chirality‐induced spin selectivity (CISS), the efficient creation of spin accumulation inn‐doped GaAs via electric current injection from a normal metal (Au) electrode through a self‐assembled monolayer (SAM) of chiral molecules (α‐helixl‐polyalanine, AHPA‐L), is demonstrated. The resulting spin polarization is detected as a Hanle effect in then‐GaAs, which is found to obey a distinct universal scaling with temperature and bias current consistent with chirality‐induced spin accumulation. The experiment constitutes a definitive observation of CISS in a fully nonmagnetic device structure and demonstration of its ability to generate spin accumulation in a conventional SC. The results thus place key constraints on the physical mechanism of CISS and present a new scheme for magnet‐free SC spintronics. 
    more » « less
  2. Abstract Chirality has been a property of central importance in physics, chemistry and biology for more than a century. Recently, electrons were found to become spin polarized after transmitting through chiral molecules, crystals, and their hybrids. This phenomenon, called chirality-induced spin selectivity (CISS), presents broad application potentials and far-reaching fundamental implications involving intricate interplays among structural chirality, topological states, and electronic spin and orbitals. However, the microscopic picture of how chiral geometry influences electronic spin remains elusive, given the negligible spin-orbit coupling (SOC) in organic molecules. In this work, we address this issue via a direct comparison of magnetoconductance (MC) measurements on magnetic semiconductor-based chiral molecular spin valves with normal metal electrodes of contrasting SOC strengths. The experiment reveals that a heavy-metal electrode provides SOC to convert the orbital polarization induced by the chiral molecular structure tospinpolarization. Our results illustrate the essential role of SOC in the metal electrode for the CISS spin valve effect. A tunneling model with a magnetochiral modulation of the potential barrier is shown to quantitatively account for the unusual transport behavior. 
    more » « less
  3. Abstract Over the past two decades, the chirality‐induced spin selectivity (CISS) effect was reported in several experiments disclosing a unique connection between chirality and electron spin. Recent theoretical works highlighted time‐resolved Electron Paramagnetic Resonance (trEPR) as a powerful tool to directly detect the spin polarization resulting from CISS. Here, we report a first attempt to detect CISS at the molecular level by linking the pyrene electron donor to the fullerene acceptor with chiral peptide bridges of different length and electric dipole moment. The dyads are investigated by an array of techniques, including cyclic voltammetry, steady‐state and transient optical spectroscopies, and trEPR. Despite the promising energy alignment of the electronic levels, our multi‐technique analysis reveals no evidence of electron transfer (ET), highlighting the challenges of spectroscopic detection of CISS. However, the analysis allows the formulation of guidelines for the design of chiral organic model systems suitable to directly probe CISS‐polarized ET. 
    more » « less
  4. Recently, Santos et al. published an article titled “Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance” in ACS Nano. In this article it was claimed that crystalline amino acid enantiomers can give rise to 1H-15N and 1H-13C cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra with different relative signal intensities. The authors attributed such differences to transient changes in T1 relaxation times resulting from an interaction between the electron spins and the radiofrequency contact pulses used in the CPMAS experiment, and discussed this proposed phenomenon in terms of the chirality-induced spin selectivity (CISS) effect. We disagree with the authors conclusion that the CISS effect plays a role in the different signal intensities observed in the CPMAS solid-state NMR spectra of crystalline enantiomers. Quantitative 13C CPMAS experiments on aspartic acid enantiomers demonstrate that CPMAS signal variations can likely be attributed to sample dependent differences in T1 relaxation times rather than any chirality effects. 
    more » « less
  5. Essential aspects of the chiral induced spin selectivity (CISS) effect and their implications for spin-controlled chemistry and asymmetric electrochemical reactions are described. The generation of oxygen through electrolysis is discussed as an example in which chirality-based spin-filtering and spin selection rules can be used to improve the reaction's efficiency and selectivity. Next the discussion shifts to illustrate how the spin selectivity of chiral molecules (CISS properties) allows one to use the electron spin as a chiral bias for inducing asymmetric reactions and promoting enantiospecific processes. Two enantioselective electrochemical reactions that have used polarized electron spins as a chiral reagent are described; enantioselective electroreduction to resolve an enantiomer from a racemic mixture and an oxidative electropolymerization to generate a chiral polymer from achiral monomers. A complementary approach that has used spin-polarized, but otherwise achiral, molecular films to enantiospecifically associate with one enantiomer from a racemic mixture is also discussed. Each of these reaction types use magnetized films to generate the spin polarized electrons and the enantiospecificity can be selected by choice of the magnetization direction, North pole versus South pole. Possible paths for future research in this area and its compatibility with existing methods based on chiral electrodes are discussed. 
    more » « less