Overhauser dynamic nuclear polarization (ODNP) NMR of solutions at high fields is usually mediated by scalar couplings that polarize the nuclei of heavier, electron-rich atoms. This leaves 1H-detected NMR outside the realm of such studies. This study presents experiments that deliver 1H-detected NMR experiments on relatively large liquid volumes (60 ∼ 100 μL) and at high fields (14.1 T), while relying on ODNP enhancements. To this end 13C NMR polarizations were first enhanced by relying on a mechanism that utilizes e--13C scalar coupling interactions; the nuclear spin alignment thus achieved was then passed on to neighboring 1H for observation, by a reverse INEPT scheme relying on one-bond JCH-couplings. Such 13C 1H polarization transfer ported the 13C ODNP gains into the 1H, permitting detection at higher frequencies and with higher potential sensitivities. For a model solution of labeled 13CHCl3 comixed with a nitroxide-based TEMPO derivative as polarizing agent, an ODNP enhancement factor of ca. 5x could thus be imparted to the 1H signal. When applied to bigger organic molecules like 2-13C-phenylacetylene and 13C8-indole, ODNP enhancements in the 1.2-3x range were obtained. Thus, although handicapped by the lower γ of the 13C, enhancements could be imparted on the 1H thermal acquisitions in all cases. We also find that conventional 1H–13C nuclear Overhauser enhancements (NOEs) are largely absent in these solutions due to the presence of co-dissolved radicals, adding negligible gains and playing negligible roles on the scalar e-→13C ODNP transfer. Potential rationalizations of these effects as well as extensions of these experiments, are briefly discussed.
more »
« less
Comment on “Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance”
Recently, Santos et al. published an article titled “Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance” in ACS Nano. In this article it was claimed that crystalline amino acid enantiomers can give rise to 1H-15N and 1H-13C cross-polarization magic angle spinning (CPMAS) solid-state NMR spectra with different relative signal intensities. The authors attributed such differences to transient changes in T1 relaxation times resulting from an interaction between the electron spins and the radiofrequency contact pulses used in the CPMAS experiment, and discussed this proposed phenomenon in terms of the chirality-induced spin selectivity (CISS) effect. We disagree with the authors conclusion that the CISS effect plays a role in the different signal intensities observed in the CPMAS solid-state NMR spectra of crystalline enantiomers. Quantitative 13C CPMAS experiments on aspartic acid enantiomers demonstrate that CPMAS signal variations can likely be attributed to sample dependent differences in T1 relaxation times rather than any chirality effects.
more »
« less
- Award ID(s):
- 1709972
- PAR ID:
- 10094913
- Date Published:
- Journal Name:
- ACS nano
- ISSN:
- 1936-0851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chirality-induced spin selectivity (CISS) is a recently discovered effect in which structural chirality can result in different conductivities for electrons with opposite spins. In the CISS community, the degree of spin polarization is commonly used to describe the efficiency of the spin filtering/polarizing process, as it represents the fraction of spins aligned along the chiral axis of chiral materials originating from non-spin-polarized currents. However, the methods of defining, calculating, and analyzing spin polarization have been inconsistent across various studies, hindering advances in this field. In this Perspective, we connect the relevant background and the definition of spin polarization, discuss its calculation in different contexts in CISS, and propose a practical and meaningful figure of merit for quantitative analyses in CISS.more » « less
-
Cross-polarization (CP) is a technique commonly used for the signal enhancement of NMR spectra; however, applications to quadrupolar nuclei have heretofore been limited due to a number of problems, including poor spin-locking efficiency, inconvenient relaxation times, and reduced CP efficiencies over broad spectral bandwidths─this is unfortunate, since they constitute 73% of NMR-active nuclei in the periodic table. The Broadband Adiabatic Inversion CP (BRAIN-CP) pulse sequence has proven useful for the signal enhancement of wideline and ultra-wideline (i.e., 250 kHz to several MHz in breadth) powder patterns arising from stationary samples; however, a comprehensive investigation of its application to half-integer quadrupolar nuclei (HIQN) is currently lacking. Herein, we present theoretical and experimental considerations for applying BRAIN-CP to acquire central-transition (CT, +1/2 ↔ −1/2) powder patterns of HIQN. Consideration is given to parameters crucial to the success of the experiment, such as the Hartmann–Hahn (HH) matching conditions and the phase modulation of the contact pulse. Modifications to the BRAIN-CP sequence such as flip-back (FB) pulses and ramped contact pulses applied to the 1H spins are used for the reduction of experimental times and increased CP bandwidth capabilities, respectively. Spectra for a series of quadrupolar nuclei with broad CT powder patterns, including 35Cl (S = 3/2), 55Mn (S = 5/2), 59Co (S = 7/2), and 93Nb (S = 9/2), are acquired via direct excitation (CPMG and WCPMG) and indirect excitation (CP/CPMG and BRAIN-CP) methods. We demonstrate that proper implementation of the sequence can enable 1H-S broadband CP over a bandwidth of 1 MHz, which to the best of our knowledge is the largest CP bandwidth reported to date. Finally, we establish the basic principles necessary for simplified optimization and execution of the BRAIN-CP pulse sequence for a wide range of HIQNs.more » « less
-
Abstract Solid‐state NMR (SSNMR) spectroscopy of integer‐spin quadrupolar nuclei is important for the molecular‐level characterization of a variety of materials and biological solids; of the integer spins,2H (S = 1) is by far the most widely studied, due to its usefulness in probing dynamical motions. SSNMR spectra of integer‐spin nuclei often feature very broad powder patterns that arise largely from the effects of the first‐order quadrupolar interaction; as such, the acquisition of high‐quality spectra continues to remain a challenge. The broadband adiabatic inversion cross‐polarization (BRAIN‐CP) pulse sequence, which is capable of cross‐polarization (CP) enhancement over large bandwidths, has found success for the acquisition of SSNMR spectra of integer‐spin nuclei, including14N (S = 1), especially when coupled with Carr–Purcell/Meiboom–Gill pulse sequences featuring frequency‐swept WURST pulses (WURST‐CPMG) forT2‐based signal enhancement. However, to date, there has not been a systematic investigation of the spin dynamics underlying BRAIN‐CP, nor any concrete theoretical models to aid in its parameterization for applications to integer‐spin nuclei. In addition, the BRAIN‐CP/WURST‐CPMG scheme has not been demonstrated for generalized application to wideline or ultra‐wideline (UW)2H SSNMR. Herein, we provide a theoretical description of the BRAIN‐CP pulse sequence for spin‐1/2 → spin‐1 CP under static conditions, featuring a set of analytical equations describing Hartmann–Hahn matching conditions and numerical simulations that elucidate a CP mechanism involving polarization transfer, coherence exchange, and adiabatic inversion. Several experimental examples are presented for comparison with theoretical models and previously developed integer‐spin CP methods, demonstrating rapid acquisition of2H NMR spectra from efficient broadband CP.more » « less
-
Chain entanglements play a crucial role in polymer crystallization, yet their effects on crystallization remain not fully understood. Freeze-drying is one way to potentially preserve disentangled states of long polymer chains. In fact, it is known that freeze-drying (FD) significantly accelerates the crystallization kinetics of semicrystalline polymers. However, the chain-level structure of the FD polymer chains without a long-range order (glass) has been a debatable matter. In this study, we investigate the effect of freeze-drying on single chain-level structures of 13CH3 enriched poly(L-lactic Acid) and 13CH enriched poly(D-lactic acid) racemate by using 1H-1H spin diffusion via 13C detection solid-state NMR spectroscopy. Spatial distributions of PLLA and PDLA glassy chains in the range of a few Å – 30 nm are evaluated via 1H-1H spin diffusion. This analysis provides core-shell morphology of single chains where the outer shell layers include both PDLA and PLLA mixture and the inner core possess a single component.more » « less
An official website of the United States government

