skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Neural Network Based Dynamic Resource Reallocation of BBU Pools in 5G C-RAN ROADM Networks
Abstract: An LSTM network is developed to predict BBU pool traffic in 5G C-RAN ROADM networks. 5G throughput improvement and resource savings are observed with resource reallocation by reconfiguring the optical network 30 minutes in advance. OCIS codes: (060.4256) Networks, network optimization; (060.0060) Fiber optics and optical communications  more » « less
Award ID(s):
1601784
PAR ID:
10095018
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
OSA 2018
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An LSTM network is developed to predict BBU pool traffic in 5G C-RAN ROADM networks. 5G throughput improvement and resource savings are observed with resource reallocation by reconfiguring the optical network 30 minutes in advance. OCIS codes: (060.4256) Networks, network optimization; (060.0060) Fiber optics and optical communications 
    more » « less
  2. Optical resource management and path reconfiguration have become increasingly paramount in the era of dynamic and flexible optical networks. This paper presents machine learning-based optical resource assignment for highly efficient resource utilization in Spatial Division Multiplexing (SDM) networks. We also demonstrate a network orchestration with a Whitebox-based optical network and failure prediction in an SDM network. 
    more » « less
  3. 5G and beyond communication networks require satisfying very low latency standards, high reliability, high- speed user connectivity, more security, improved capacity and better service demands. Augmenting such a wide range of KPIs (Key Performance Indicators) needs a smart, intelligent and programmable solution for TSPs (Telecommunication Service Providers). Resource availability and quality sustainability are challenging parameters in a heterogeneous 5G environment. Programmable Dynamic Network Slicing (PDNS) is a key technology enabling parameter that can allow multiple tenants to bring their versatile applications simultaneously over shared physical infrastructure. Latest emerging technologies like virtualized Software- Defined Networks (vSDN) and Artificial Intelligence (AI) play a pivotal supporting role in solving the above-mentioned constraints. Using the PDNS framework, we have proposed a novel slice backup algorithm leveraging Deep Learning (DL) neural network to orchestrate network latency and load efficiently. Our model has been trained using the available KPIs and incoming traffic is analyzed. The proposed solution performs stable load balancing between shared slices even if certain extreme conditions (slice unavailability) through intelligent resource allocation. The framework withstands service outage and always select the most suitable slice as a backup. Our results show latency-aware resource distribution for better network stability. 
    more » « less
  4. An important aspect of 5G networks is the development of Radio Access Network (RAN) slicing, a concept wherein the virtualized infrastructure of wireless networks is subdivided into slices (or enterprises), tailored to fulfill specific use-cases. A key focus in this context is the efficient radio resource allocation to meet various enterprises’ service-level agreements (SLAs). In this work, we introduce Helix: a channel-aware and SLAaware RAN slicing framework for massive multiple input multiple output (MIMO) networks where resource allocation extends to incorporate the spatial dimension available through beamforming. Essentially, the same time-frequency resource block (RB) can be shared across multiple users through multiple antennas. Notably, certain enterprises, particularly those operating critical infrastructure, necessitate dedicated RB allocation, denoted as private networks, to ensure security. Conversely, some enterprises would allow resource sharing with others in the public network to maintain network performance while minimizing capital expenditure. Building upon this understanding, Helix comprises scheduling schemes under both scenarios: where different slices share the same set of RBs, and where they require exclusivity of allocated RBs. We validate the efficacy of our proposed schedulers through simulation by utilizing a channel data set collected from a real-world massive MIMO testbed. Our assessments demonstrate that resource sharing across slices using our approach can lead up to 60.9% reduction in RB usage compared to other approaches. Moreover, our proposed schedulers exhibit significantly enhanced operational efficiency, with significantly faster running time compared to exhaustive greedy approaches while meeting the stringent 5G sub-millisecond-level latency requirement. 
    more » « less
  5. An important aspect of 5G networks is the development of Radio Access Network (RAN) slicing, a concept wherein the virtualized infrastructure of wireless networks is subdivided into slices (or enterprises), tailored to fulfill specific use-cases. A key focus in this context is the efficient radio resource allocation to meet various enterprises' service-level agreements (SLAs). In this work, we introduce Helix: a channel-aware and SLA-aware RAN slicing framework for massive multiple input multiple output (MIMO) networks where resource allocation extends to incorporate the spatial dimension available through beamforming. Essentially, the same time-frequency resource block (RB) can be shared across multiple users through multiple antennas. Notably, certain enterprises, particularly those operating critical infrastructure, necessitate dedicated RB allocation, denoted as private networks, to ensure security. Conversely, some enterprises would allow resource sharing with others in the public network to maintain network performance while minimizing capital expenditure. Building upon this understanding, Helix comprises scheduling schemes under both scenarios: where different slices share the same set of RBs, and where they require exclusivity of allocated RBs. We validate the efficacy of our proposed schedulers through simulation by utilizing a channel data set collected from a real-world massive MIMO testbed. Our assessments demonstrate that resource sharing across slices using our approach can lead up to 60.9% reduction in RB usage compared to other approaches. Moreover, our proposed schedulers exhibit significantly enhanced operational efficiency, with significantly faster running time compared to exhaustive greedy approaches while meeting the stringent 5G sub-millisecond-level latency requirement. 
    more » « less