skip to main content


Title: Developing Early Detectors of Student Attrition and Wheel Spinning Using Deep Learning
The increased usage of computer-based learning platforms and online tools in classrooms presents new opportunities to not only study the underlying constructs involved in the learning process, but also use this information to identify and aid struggling students. Many learning platforms, particularly those driving or supplementing instruction, are only able to provide aid to students who interact with the system. With this in mind, student persistence emerges as a prominent learning construct contributing to students success when learning new material. Conversely, high persistence is not always productive for students, where additional practice does not help the student move toward a state of mastery of the material. In this paper, we apply a transfer learning methodology using deep learning and traditional modeling techniques to study high and low representations of unproductive persistence. We focus on two prominent problems in the fields of educational data mining and learner analytics representing low persistence, characterized as student "stopout," and unproductive high persistence, operationalized through student "wheel spinning," in an effort to better understand the relationship between these measures of unproductive persistence (i.e. stopout and wheel spinning) and develop early detectors of these behaviors. We find that models developed to detect each within and across-assignment stopout and wheel spinning are able to learn sets of features that generalize to predict the other. We further observe how these models perform at each learning opportunity within student assignments to identify when interventions may be deployed to best aid students who are likely to exhibit unproductive persistence.  more » « less
Award ID(s):
1724889
NSF-PAR ID:
10095357
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Learning Technologies
ISSN:
2372-0050
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Research on non-cognitive factors has shown that persistence in the face of challenges plays an important role in learning. However, recent work on wheel-spinning, a type of unproductive persistence where students spend too much time struggling without achieving mastery of skills, show that not all persistence is uniformly beneficial for learning. For this reason, it becomes increasingly pertinent to identify the key differences between unproductive and productive persistence toward informing interventions in computer-based learning environments. In this study, we use a classification model to distinguish between productive persistence and wheel-spinning in ASSISTments, an online math learning platform. Our results indicate that there are two types of students who wheel-spin: first, students who do not request any hints in at least one problem but request more than one bottom-out hint across any 8 problems in the problem set; second, students who never request two or more bottom out hints across any 8 problems, do not request any hints in at least one problem, but who engage in relatively short delays between solving problems of the same skill. These findings suggest that encouraging students to both engage in spaced practice and use bottom-out hints sparingly is likely helpful for reducing their wheel-spinning and improving learning. These findings also provide insight on when students are struggling and how to make students' persistence more productive. 
    more » « less
  2. A prominent issue faced by the education research community is that of student attrition. While large research efforts have been devoted to studying course-level attrition, widely referred to as dropout, less research has been focused on finer-grained assignment level attrition commonly observed in K-12 classrooms. This later instantiation of attrition, referred to in this paper as “stopout,” is characterized by students failing to complete their assigned work, but the cause of such behavior are not often known. This becomes a large problem for educators and developers of learning platforms as students who give up on assignments early are missing opportunities to learn and practice the material which may affect future performance on related topics; similarly, it is difficult for researchers to develop, and subsequently difficult for computer-based systems to deploy interventions aimed at promoting productive persistence once a student has ceased interaction with the software. This difficulty highlights the importance to understand and identify early signs of stopout behavior in order to provide aid to students preemptively to promote productive persistence in their learning. While many cases of student stopout may be attributable to gaps in student knowledge and indicative of struggle, student attributes such as grit and persistence may be further affected by other factors. This work focuses on identifying different forms of stopout behavior in the context of middle school math by observing student behaviors at the sub-problem level. We find that students exhibit disproportionate stopout on the first problem of their assignments in comparison to stopout on subsequent problems, identifying a behavior that we call “refusal,” and use the emerging patterns of student activity to better understand the potential causes underlying stopout behavior early in an assignment. 
    more » « less
  3. There are significant disparities between the conferring of science, technology, engineering, and mathematics (STEM) bachelor’s degrees to minoritized groups and the number of STEM faculty that represent minoritized groups at four-year predominantly White institutions (PWIs). Studies show that as of 2019, African American faculty at PWIs have increased by only 2.3% in the last 20 years. This study explores the ways in which this imbalance affects minoritized students in engineering majors. Our research objective is to describe the ways in which African American students navigate their way to success in an engineering program at a PWI where the minoritized faculty representation is less than 10%. In this study, we define success as completion of an undergraduate degree and matriculation into a Ph.D. program. Research shows that African American students struggle with feeling like the “outsider within” in graduate programs and that the engineering culture can permeate from undergraduate to graduate programs. We address our research objective by conducting interviews using navigational capital as our theoretical framework, which can be defined as resilience, academic invulnerability, and skills. These three concepts come together to denote the journey of an individual as they achieve success in an environment not created with them in mind. Navigational capital has been applied in education contexts to study minoritized groups, and specifically in engineering education to study the persistence of students of color. Research on navigational capital often focuses on how participants acquire resources from others. There is a limited focus on the experience of the student as the individual agent exercising their own navigational capital. Drawing from and adapting the framework of navigational capital, this study provides rich descriptions of the lived experiences of African American students in an engineering program at a PWI as they navigated their way to academic success in a system that was not designed with them in mind. This pilot study took place at a research-intensive, land grant PWI in the southeastern United States. We recruited two students who identify as African American and are in the first year of their Ph.D. program in an engineering major. Our interview protocol was adapted from a related study about student motivation, identity, and sense of belonging in engineering. After transcribing interviews with these participants, we began our qualitative analysis with a priori coding, drawing from the framework of navigational capital, to identify the experiences, connections, involvement, and resources the participants tapped into as they maneuvered their way to success in an undergraduate engineering program at a PWI. To identify other aspects of the participants’ experiences that were not reflected in that framework, we also used open coding. The results showed that the participants tapped into their navigational capital when they used experiences, connections, involvement, and resources to be resilient, academically invulnerable, and skillful. They learned from experiences (theirs or others’), capitalized on their connections, positioned themselves through involvement, and used their resources to achieve success in their engineering program. The participants identified their experiences, connections, and involvement. For example, one participant who came from a blended family (African American and White) drew from the experiences she had with her blended family. Her experiences helped her to understand the cultures of Black and White people. She was able to turn that into a skill to connect with others at her PWI. The point at which she took her familial experiences to use as a skill to maneuver her way to success at a PWI was an example of her navigational capital. Another participant capitalized on his connections to develop academic invulnerability. He was able to build his connections by making meaningful relationships with his classmates. He knew the importance of having reliable people to be there for him when he encountered a topic he did not understand. He cultivated an environment through relationships with classmates that set him up to achieve academic invulnerability in his classes. The participants spoke least about how they used their resources. The few mentions of resources were not distinct enough to make any substantial connection to the factors that denote navigational capital. The participants spoke explicitly about the PWI culture in their engineering department. From open coding, we identified the theme that participants did not expect to have role models in their major that looked like them and went into their undergraduate experience with the understanding that they will be the distinct minority in their classes. They did not make notable mention of how a lack of minority faculty affected their success. Upon acceptance, they took on the challenge of being a racial minority in exchange for a well-recognized degree they felt would have more value compared to engineering programs at other universities. They identified ways they maneuvered around their expectation that they would not have representative role models through their use of navigational capital. Integrating knowledge from the framework of navigational capital and its existing applications in engineering and education allows us the opportunity to learn from African American students that have succeeded in engineering programs with low minority faculty representation. The future directions of this work are to outline strategies that could enhance the path of minoritized engineering students towards success and to lay a foundation for understanding the use of navigational capital by minoritized students in engineering at PWIs. Students at PWIs can benefit from understanding their own navigational capital to help them identify ways to successfully navigate educational institutions. Students’ awareness of their capacity to maintain high levels of achievement, their connections to networks that facilitate navigation, and their ability to draw from experiences to enhance resilience provide them with the agency to unleash the invisible factors of their potential to be innovators in their collegiate and work environments. 
    more » « less
  4. Personalized learning stems from the idea that students benefit from instructional material tailored to their needs. Many online learning platforms purport to implement some form of personalized learning, often through on-demand tutoring or self-paced instruction, but to our knowledge none have a way to automatically explore for specific opportunities to personalize students’ education nor a transparent way to identify the effects of personalization on specific groups of students. In this work we present the Automatic Personalized Learning Service (APLS). The APLS uses multi-armed bandit algorithms to recommend the most effective support to each student that requests assistance when completing their online work, and is currently used by ASSISTments, an online learning platform. The first empirical study of the APLS found that Beta-Bernoulli Thompson Sampling, a popular and effective multi-armed bandit algorithm, was only slightly more capable of selecting helpful support than randomly selecting from the relevant support options. Therefore, we also present Decision Tree Thompson Sampling (DTTS), a novel contextual multi-armed bandit algorithm that integrates the transparency and interpretability of decision trees into Thomson sampling. In simulation, DTTS overcame the challenges of recommending support within an online learning platform and was able to increase students’ learning by as much as 10% more than the current algorithm used by the APLS. We demonstrate that DTTS is able to identify qualitative interactions that not only help determine the most effective support for students, but that also generalize well to new students, problems, and support content. The APLS using DTTS is now being deployed at scale within ASSISTments and is a promising tool for all educational learning platforms. 
    more » « less
  5. Personalized learning stems from the idea that students benefit from instructional material tailored to their needs. Many online learning platforms purport to implement some form of personalized learning, often through on-demand tutoring or self-paced instruction, but to our knowledge none have a way to automatically explore for specific opportunities to personalize students’ education nor a transparent way to identify the effects of personalization on specific groups of students. In this work we present the Automatic Personalized Learning Service (APLS). The APLS uses multi-armed bandit algorithms to recommend the most effective support to each student that requests assistance when completing their online work, and is currently used by ASSISTments, an online learning platform. The first empirical study of the APLS found that Beta-Bernoulli Thompson Sampling, a popular and effective multi-armed bandit algorithm, was only slightly more capable of selecting helpful support than randomly selecting from the relevant support options. Therefore, we also present Decision Tree Thompson Sampling (DTTS), a novel contextual multi-armed bandit algorithm that integrates the transparency and interpretability of decision trees into Thomson sampling. In simulation, DTTS overcame the challenges of recommending support within an online learning platform and was able to increase students’ learning by as much as 10% more than the current algorithm used by the APLS. We demonstrate that DTTS is able to identify qualitative interactions that not only help determine the most effective support for students, but that also generalize well to new students, problems, and support content. The APLS using DTTS is now being deployed at scale within ASSISTments and is a promising tool for all educational learning platforms. 
    more » « less