The increased usage of computer-based learning platforms and online tools in classrooms presents new opportunities to not only study the underlying constructs involved in the learning process, but also use this information to identify and aid struggling students. Many learning platforms, particularly those driving or supplementing instruction, are only able to provide aid to students who interact with the system. With this in mind, student persistence emerges as a prominent learning construct contributing to students success when learning new material. Conversely, high persistence is not always productive for students, where additional practice does not help the student move toward a state of mastery of the material. In this paper, we apply a transfer learning methodology using deep learning and traditional modeling techniques to study high and low representations of unproductive persistence. We focus on two prominent problems in the fields of educational data mining and learner analytics representing low persistence, characterized as student "stopout," and unproductive high persistence, operationalized through student "wheel spinning," in an effort to better understand the relationship between these measures of unproductive persistence (i.e. stopout and wheel spinning) and develop early detectors of these behaviors. We find that models developed to detect each within and across-assignment stopout and wheel spinning are able to learn sets of features that generalize to predict the other. We further observe how these models perform at each learning opportunity within student assignments to identify when interventions may be deployed to best aid students who are likely to exhibit unproductive persistence.
more »
« less
Decision Tree Modeling of Wheel- Spinning and Productive Persistence in Skill Builders
Research on non-cognitive factors has shown that persistence in the face of challenges plays an important role in learning. However, recent work on wheel-spinning, a type of unproductive persistence where students spend too much time struggling without achieving mastery of skills, show that not all persistence is uniformly beneficial for learning. For this reason, it becomes increasingly pertinent to identify the key differences between unproductive and productive persistence toward informing interventions in computer-based learning environments. In this study, we use a classification model to distinguish between productive persistence and wheel-spinning in ASSISTments, an online math learning platform. Our results indicate that there are two types of students who wheel-spin: first, students who do not request any hints in at least one problem but request more than one bottom-out hint across any 8 problems in the problem set; second, students who never request two or more bottom out hints across any 8 problems, do not request any hints in at least one problem, but who engage in relatively short delays between solving problems of the same skill. These findings suggest that encouraging students to both engage in spaced practice and use bottom-out hints sparingly is likely helpful for reducing their wheel-spinning and improving learning. These findings also provide insight on when students are struggling and how to make students' persistence more productive.
more »
« less
- Award ID(s):
- 1724889
- PAR ID:
- 10095369
- Date Published:
- Journal Name:
- Journal of educational data mining
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2157-2100
- Page Range / eLocation ID:
- 36-71
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null; null (Ed.)We explore how different elements of student persistence on computer programming problems may be related to learning outcomes and inform us about which elements may distinguish between productive and unproductive persistence. We collected data from an introductory computer science course at a large midwestern university in the U.S. hosted on an open-source, problem-driven learning system. We defined a set of features quantifying various aspect of persistence during problem solving and used a predictive modeling approach to predict student scores on subsequent and related quiz questions. We focused on careful feature engineering and model interpretation to shed light on the intricacies of both productive and unproductive persistence. Feature importance was analyzed using SHapley Additive exPlanations (SHAP) values. We found that the most impactful features were persisting until solving the problem, rapid guessing, and taking a break, while those with the strongest correlation between their values and their impact on prediction were the number of submissions, total time, and (again) taking a break. This suggests that the former are important features for accurate prediction, while the latter are indicative of the differences between productive persistence and wheel spinning in a computer science context.more » « less
-
null (Ed.)Determining when and whether to provide personalized support is a well-known challenge called the assistance dilemma. A core problem in solving the assistance dilemma is the need to discover when students are unproductive so that the tutor can intervene. Such a task is particularly challenging for open-ended domains, even those that are well-structured with defined principles and goals. We present a set of datadriven methods to classify, predict, and prevent unproductive problem-solving steps in the well-structured open-ended domain of logic. This approach leverages and extends the Hint Factory, a set of methods that leverages prior student solution attempts to build data-driven intelligent tutors. We present a HelpNeed classification that uses prior student data to determine when students are likely to be unproductive and need help learning optimal problem-solving strategies. We present a controlled study to determine the impact of an Adaptive pedagogical policy that provides proactive hints at the start of each step based on the outcomes of our HelpNeed predictor: productive vs. unproductive. Our results show that the students in the Adaptive condition exhibited better training behaviors, with lower help avoidance, and higher help appropriateness (a higher chance of receiving help when it was likely to be needed), as measured using the HelpNeed classifier, when compared to the Control. Furthermore, the results show that the students who received Adaptive hints based on HelpNeed predictions during training significantly outperform their Control peers on the posttest, with the former producing shorter, more optimal solutions in less time. We conclude with suggestions on how these HelpNeed methods could be applied in other well-structured open-ended domains.more » « less
-
null (Ed.)Within intelligent tutoring systems, considerable research has in-vestigated hints, including how to generate data-driven hints, what hint con-tent to present, and when to provide hints for optimal learning outcomes. How-ever, less attention has been paid to how hints are presented. In this paper, we propose a new hint delivery mechanism called “Assertions” for providing unsolicited hints in a data-driven intelligent tutor. Assertions are partially-worked example steps designed to appear within a student workspace, and in the same format as student-derived steps, to show students a possible subgoal leading to the solution. We hypothesized that Assertions can help address the well-known hint avoidance problem. In systems that only provide hints upon request, hint avoidance results in students not receiving hints when they are needed. Our unsolicited Assertions do not seek to improve student help-seeking, but rather seek to ensure students receive the help they need. We contrast Assertions with Messages, text-based, unsolicited hints that appear after student inactivity. Our results show that Assertions significantly increase unsolicited hint usage compared to Messages. Further, they show a signifi-cant aptitude-treatment interaction between Assertions and prior proficiency, with Assertions leading students with low prior proficiency to generate shorter (more efficient) posttest solutions faster. We also present a clustering analysis that shows patterns of productive persistence among students with low prior knowledge when the tutor provides unsolicited help in the form of Assertions. Overall, this work provides encouraging evidence that hint presentation can significantly impact how students use them and using Assertions can be an effective way to address help avoidance.more » « less
-
Problem solving is an integral part of doing science, yet it is challenging for students in many disciplines to learn. We explored student success in solving genetics problems in several genetics content areas using sets of three consecutive questions for each content area. To promote improvement, we provided students the choice to take a content-focused prompt, termed a “content hint,” during either the second or third question within each content area. Overall, for students who answered the first question in a content area incorrectly, the content hints helped them solve additional content-matched problems. We also examined students’ descriptions of their problem solving and found that students who improved following a hint typically used the hint content to accurately solve a problem. Students who did not improve upon receipt of the content hint demonstrated a variety of content-specific errors and omissions. Overall, ultimate success in the practice assignment (on the final question of each topic) predicted success on content-matched final exam questions, regardless of initial practice performance or initial genetics knowledge. Our findings suggest that some struggling students may have deficits in specific genetics content knowledge, which when addressed, allow the students to successfully solve challenging genetics problems.more » « less
An official website of the United States government

