skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Studying Affect Dynamics and Chronometry Using Sensor-Free Detectors
Student affect has been found to correlate with short- and long-term learning outcomes, including college attendance as well as interest and involvement in Science, Technology, Engineering, and Mathematics (STEM) careers. However, there still remain significant questions about the processes by which affect shifts and develops during the learning process. Much of this research can be split into affect dynamics, the study of the temporal transitions between affective states, and affective chronometry, the study of how an affect state emerges and dissipates over time. Thus far, these affective processes have been primarily studied using field observations, sensors, or student self-report measures; however, these approaches can be coarse, and obtaining finer grained data produces challenges to data fidelity. Recent developments in sensor-free detectors of student affect, utilizing only the data from student interactions with a computer based learning platform, open an opportunity to study affect dynamics and chronometry at moment-to-moment levels of granularity. This work presents a novel approach, applying sensor-free detectors to study these two prominent problems in affective research.  more » « less
Award ID(s):
1724889
PAR ID:
10095360
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 11th International Conference on Educational Data Mining
Page Range / eLocation ID:
157-166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    Research into student affect detection has historically relied on ground truth measures of emotion that utilize one of three sources of data: (1) self-report data, (2) classroom observations, or (3) sensor data that is retrospectively labeled. Although a few studies have compared sensor- and observation-based ap-proaches to student affective modeling, less work has explored the relationship between self-report and classroom observa-tions. In this study, we use both recurring self-reports (SR) and classroom observation (BROMP) to measure student emotion during a study involving middle school students interacting with a game-based learning environment for microbiology educa-tion. We use supervised machine learning to develop two sets of affect detectors corresponding to SR and BROMP-based measures of student emotion, respectively. We compare the two sets of detectors in terms of their most relevant features, as well as correlations of their output with measures of student learning and interest. Results show that highly predictive features in the SR detectors are different from those selected for BROMP-based detectors. The associations with interest and motivation measures show that while SR detectors captured underlying motivations, the BROMP detectors seemed to capture more in-the-moment information about the student申fs experience. Evi-dence suggests that there is benefit of using both sources of data to model different components of student affect. 
    more » « less
  2. Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosuè; Paquette, Luc (Ed.)
    Research on epistemic emotions has often focused on how students transition between affective states (e.g., affect dynamics). More recently, studies have examined the properties of cases where a student remains in the same affective state over time, finding that the duration of a student's affective state is important for multiple learning outcomes. However, the likelihood of remaining in a given affective state has not been widely studied across different methods or systems. Additionally, the role of motivational factors in the persistence or decay of affective states remains underexplored. This study builds on two prior investigations into the exponential decay of epistemic emotions, expanding the analysis of affective chronometry by incorporating two detection methods based on student self-reports and trained observer labels in a game-based learning environment. We also examine the relationship between motivational measures and affective decay. Our findings indicate that boredom exhibits the slowest decay across both detection methods, while confusion is the least persistent. Furthermore, we found that higher situational interest and self-efficacy are associated with greater persistence in engaged concentration, as identified by both detection methods. This work provides novel insights into how motivational factors shape affective chronometry, contributing to a deeper understanding of the temporal dynamics of epistemic emotions. 
    more » « less
  3. A significant amount of research has illustrated the impact of student emotional and affective state on learning outcomes. Just as human teachers and tutors often adapt instruction to accommodate changes in student affect, the ability for computer-based systems to similarly become affect-aware, detecting and personalizing instruction in response to student affective state, could significantly improve student learning. Personalized and affective interventions in tutoring systems can be realized through affect-aware learning technologies to deter students from practicing poor learning behaviors in response to negative affective states and to optimize the amount of learning that occurs over time. In this paper, we build off previous work in affect detection within intelligent tutoring systems (ITS) by applying two methodologies to develop sensor-free models of student affect with only data recorded from middle-school students interacting with an ITS. We develop models of four affective states to evaluate and determine significant predictors of affect. Namely, we develop a model which discerns students’ reported interest significantly better than majority class. 
    more » « less
  4. Research into student affect detection has historically relied on ground truth measures of emotion that utilize one of three sources of data: (1) self-report data, (2) classroom observations, or (3) sen- sor data that is retrospectively labeled. Although a few studies have compared sensor- and observation-based approaches to student af- fective modeling, less work has explored the relationship between self-report and classroom observations. In this study, we use both recurring self-reports (SR) and classroom observation (BROMP) to measure student emotion during a study involving middle school students interacting with a game-based learning environment for microbiology education. We use supervised machine learning to develop two sets of affect detectors corresponding to SR and BROMP-based measures of student emotion, respectively. We compare the two sets of detectors in terms of their most relevant features, as well as correlations of their output with measures of student learning and interest. Results show that highly predictive features in the SR detectors are different from those selected for BROMP-based detectors. The associations with interest and moti- vation measures show that while SR detectors captured underlying motivations, the BROMP detectors seemed to capture more in-the- moment information about the student’s experience. Evidence sug- gests that there is benefit of using both sources of data to model different components of student affect. 
    more » « less
  5. Sensor-free affect detectors can detect student affect using their activities within intelligent tutoring systems or other online learning environments rather than using sensors. This technology has made affect detection more scalable and less invasive. However, existing detectors are either interpretable but less accurate (e.g., classical algorithms such as logistic regression) or more accurate but uninterpretable (e.g., neural networks). We investigate the use of a new type of neural networks that are monotonic after the first layer for affect detection that can strike a balance between accuracy and interpretability. Results on a real- world student affect dataset show that monotonic neural networks achieve comparable detection accuracy to their non-monotonic counterparts while offering some level of interpretability. 
    more » « less