skip to main content


Title: Studying Affect Dynamics and Chronometry Using Sensor-Free Detectors
Student affect has been found to correlate with short- and long-term learning outcomes, including college attendance as well as interest and involvement in Science, Technology, Engineering, and Mathematics (STEM) careers. However, there still remain significant questions about the processes by which affect shifts and develops during the learning process. Much of this research can be split into affect dynamics, the study of the temporal transitions between affective states, and affective chronometry, the study of how an affect state emerges and dissipates over time. Thus far, these affective processes have been primarily studied using field observations, sensors, or student self-report measures; however, these approaches can be coarse, and obtaining finer grained data produces challenges to data fidelity. Recent developments in sensor-free detectors of student affect, utilizing only the data from student interactions with a computer based learning platform, open an opportunity to study affect dynamics and chronometry at moment-to-moment levels of granularity. This work presents a novel approach, applying sensor-free detectors to study these two prominent problems in affective research.  more » « less
Award ID(s):
1724889
NSF-PAR ID:
10095360
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 11th International Conference on Educational Data Mining
Page Range / eLocation ID:
157-166
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A significant amount of research has illustrated the impact of student emotional and affective state on learning outcomes. Just as human teachers and tutors often adapt instruction to accommodate changes in student affect, the ability for computer-based systems to similarly become affect-aware, detecting and personalizing instruction in response to student affective state, could significantly improve student learning. Personalized and affective interventions in tutoring systems can be realized through affect-aware learning technologies to deter students from practicing poor learning behaviors in response to negative affective states and to optimize the amount of learning that occurs over time. In this paper, we build off previous work in affect detection within intelligent tutoring systems (ITS) by applying two methodologies to develop sensor-free models of student affect with only data recorded from middle-school students interacting with an ITS. We develop models of four affective states to evaluate and determine significant predictors of affect. Namely, we develop a model which discerns students’ reported interest significantly better than majority class. 
    more » « less
  2. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  3. Sensor-free affect detectors can detect student affect using their activities within intelligent tutoring systems or other online learning environments rather than using sensors. This technology has made affect detection more scalable and less invasive. However, existing detectors are either interpretable but less accurate (e.g., classical algorithms such as logistic regression) or more accurate but uninterpretable (e.g., neural networks). We investigate the use of a new type of neural networks that are monotonic after the first layer for affect detection that can strike a balance between accuracy and interpretability. Results on a real world student affect dataset show that monotonic neural networks achieve comparable detection accuracy to their non-monotonic counterparts while offering some level of interpretability. 
    more » « less
  4. Sensor-free affect detectors can detect student affect using their activities within intelligent tutoring systems or other online learning environments rather than using sensors. This technology has made affect detection more scalable and less invasive. However, existing detectors are either interpretable but less accurate (e.g., classical algorithms such as logistic regression) or more accurate but uninterpretable (e.g., neural networks). We investigate the use of a new type of neural networks that are monotonic after the first layer for affect detection that can strike a balance between accuracy and interpretability. Results on a real- world student affect dataset show that monotonic neural networks achieve comparable detection accuracy to their non-monotonic counterparts while offering some level of interpretability. 
    more » « less
  5. Abstract Background

    Despite the prevalence and potential of K–12 engineering outreach programs, the moment‐to‐moment dynamics of outreach educators' facilitation of engineering learning experiences are understudied. There is a need to identify outreach educators' teaching moves and to explore the implications of these moves.

    Purpose/Hypothesis

    We offer a preliminary framework for characterizing engineering outreach educators' teaching moves in relation to principles of ambitious instruction. This study describes outreach educators' teaching moves and identifies learning opportunities afforded by these moves.

    Design/Method

    Through discourse analysis of video recordings of a university‐led engineering outreach program, we identified teaching moves of novice engineering outreach educators in interaction with elementary student design teams. We considered 18 outreach educators' teaching moves through a lens of ambitious instruction.

    Results

    In small group interactions, outreach educators used ambitious, conservative, and inclusive teaching moves. These novice educators utilized talk moves that centered students' ideas and agency. Ambitious moves included two novel teaching moves: design check‐ins and revoicing tangible manifestations of students' ideas. Ambitious moves offered students opportunities to engage in engineering design. Conservative moves provided opportunities for students to make technical and affective progress, and to experience engineering norms.

    Conclusions

    Our work is formative in describing engineering outreach educators' teaching moves and points to outreach educators' capability in using ambitious moves. Ambitious engineering instruction may be a useful framework for designing engineering outreach to support students' participation and progress in engineering design. Additionally, conservative teaching moves, typically considered constraining, may support productive student affect and engagement in engineering design.

     
    more » « less