skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Sensor-Free Predictive Models of Affect in an Online Learning Environment
A significant amount of research has illustrated the impact of student emotional and affective state on learning outcomes. Just as human teachers and tutors often adapt instruction to accommodate changes in student affect, the ability for computer-based systems to similarly become affect-aware, detecting and personalizing instruction in response to student affective state, could significantly improve student learning. Personalized and affective interventions in tutoring systems can be realized through affect-aware learning technologies to deter students from practicing poor learning behaviors in response to negative affective states and to optimize the amount of learning that occurs over time. In this paper, we build off previous work in affect detection within intelligent tutoring systems (ITS) by applying two methodologies to develop sensor-free models of student affect with only data recorded from middle-school students interacting with an ITS. We develop models of four affective states to evaluate and determine significant predictors of affect. Namely, we develop a model which discerns students’ reported interest significantly better than majority class.  more » « less
Award ID(s):
1724889
PAR ID:
10095368
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Eleventh International Conference on Educational Data Mining
Page Range / eLocation ID:
634-637
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Educational technologies, such as teacher dashboards, are being developed to support teachers’ instruction and students’ learning. Specifically, dashboards support teachers in providing the just-in-time instruction needed by students in complex contexts such as science inquiry. In this study, we used the Inq-Blotter teacher-alerting dashboard to investigate whether teacher support elicited by the technology influenced students’ inquiry performance in a science intelligent tutoring system, Inq-ITS. Results indicated that students’ inquiry improved after receiving teachers’ help, elicited by the Inq-Blotter alerts. This inquiry improvement was significantly greater than for matched students who did not receive help from the teacher in response to alerts. Epistemic network analyses were then used to investigate the patterns in the discursive supports provided to students by teachers. These analyses revealed significant differences in the types of support that fostered (versus did not foster) student improvement; differences across teachers were also found. Overall, this study used innovative tools and analyses to understand how teachers use this technological genre of alerting dashboards to dynamically support students in science inquiry. 
    more » « less
  2. Student affect has been found to correlate with short- and long-term learning outcomes, including college attendance as well as interest and involvement in Science, Technology, Engineering, and Mathematics (STEM) careers. However, there still remain significant questions about the processes by which affect shifts and develops during the learning process. Much of this research can be split into affect dynamics, the study of the temporal transitions between affective states, and affective chronometry, the study of how an affect state emerges and dissipates over time. Thus far, these affective processes have been primarily studied using field observations, sensors, or student self-report measures; however, these approaches can be coarse, and obtaining finer grained data produces challenges to data fidelity. Recent developments in sensor-free detectors of student affect, utilizing only the data from student interactions with a computer based learning platform, open an opportunity to study affect dynamics and chronometry at moment-to-moment levels of granularity. This work presents a novel approach, applying sensor-free detectors to study these two prominent problems in affective research. 
    more » « less
  3. In this work, we propose a video-based transfer learning approach for predicting problem outcomes of students working with an intelligent tutoring system (ITS). By analyzing a student's face and gestures, our method predicts the outcome of a student answering a problem in an ITS from a video feed. Our work is motivated by the reasoning that the ability to predict such outcomes enables tutoring systems to adjust interventions, such as hints and encouragement, and to ultimately yield improved student learning. We collected a large labeled dataset of student interactions with an intelligent online math tutor consisting of 68 sessions, where 54 individual students solved 2,749 problems. We will release this dataset publicly upon publication of this paper. It will be available at https://www.cs.bu.edu/faculty/betke/research/learning/. Working with this dataset, our transfer-learning challenge was to design a representation in the source domain of pictures obtained “in the wild” for the task of facial expression analysis, and transferring this learned representation to the task of human behavior prediction in the domain of webcam videos of students in a classroom environment. We developed a novel facial affect representation and a user-personalized training scheme that unlocks the potential of this representation. We designed several variants of a recurrent neural network that models the temporal structure of video sequences of students solving math problems. Our final model, named ATL-BP for Affect Transfer Learning for Behavior Prediction, achieves a relative increase in mean F -score of 50 % over the state-of-the-art method on this new dataset. 
    more » « less
  4. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    Open-ended learning environments (OELEs) have become an important tool for promoting constructivist STEM learning. OELEs are known to promote student engagement and facilitate a deeper understanding of STEM topics. Despite their benefits, OELEs present significant challenges to novice learners who may lack the self-regulated learning (SRL) processes they need to become effective learners and problem solvers. Recent studies have revealed the importance of the relationship between students' affective states, cognitive processes, and performance in OELEs. Yet, the relations between students' use of cognitive processes and their corresponding affective states have not been studied in detail. In this paper, we investigate the relations between studentsż˝f affective states and the coherence in their cognitive strategies as they work on developing causal models of scientific processes in the XYZ OELE. Our analyses and results demonstrate that there are significant differences in the coherence of cognitive strategies used by high- and low-performing students. As a result, there are also significant differences in the affective states of the high- and low-performing students that are related to the coherence of their cognitive activities. This research contributes valuable empirical evidence on studentsż˝f cognitive-affective dynamics in OELEs, emphasizing the subtle ways in which students' understanding of their cognitive processes impacts their emotional reactions in learning environments. 
    more » « less
  5. We present and evaluate a machine learning based system that automatically grades audios of students speaking a foreign language. The use of automated systems to aid the assessment of student performance holds great promise in augmenting the teacher’s ability to provide meaningful feedback and instruction to students. Teachers spend a significant amount of time grading student work and the use of these tools can save teachers a significant amount of time on their grading. This additional time could be used to give personalized attention to each student. Significant prior research has focused on the grading of closed-form problems, open-ended essays and textual content. However, little research has focused on audio content that is much more prevalent in the language-study education. In this paper, we explore the development of automated assessment tools for audio responses in a college-level Chinese language-learning course. We analyze several challenges faced while working with data of this type as well as the generation and extraction of features for the purpose of building machine learning models to aid in the assessment of student language learning. 
    more » « less