skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sensor-Free Predictive Models of Affect in an Online Learning Environment
A significant amount of research has illustrated the impact of student emotional and affective state on learning outcomes. Just as human teachers and tutors often adapt instruction to accommodate changes in student affect, the ability for computer-based systems to similarly become affect-aware, detecting and personalizing instruction in response to student affective state, could significantly improve student learning. Personalized and affective interventions in tutoring systems can be realized through affect-aware learning technologies to deter students from practicing poor learning behaviors in response to negative affective states and to optimize the amount of learning that occurs over time. In this paper, we build off previous work in affect detection within intelligent tutoring systems (ITS) by applying two methodologies to develop sensor-free models of student affect with only data recorded from middle-school students interacting with an ITS. We develop models of four affective states to evaluate and determine significant predictors of affect. Namely, we develop a model which discerns students’ reported interest significantly better than majority class.  more » « less
Award ID(s):
1724889
PAR ID:
10095368
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Eleventh International Conference on Educational Data Mining
Page Range / eLocation ID:
634-637
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Educational technologies, such as teacher dashboards, are being developed to support teachers’ instruction and students’ learning. Specifically, dashboards support teachers in providing the just-in-time instruction needed by students in complex contexts such as science inquiry. In this study, we used the Inq-Blotter teacher-alerting dashboard to investigate whether teacher support elicited by the technology influenced students’ inquiry performance in a science intelligent tutoring system, Inq-ITS. Results indicated that students’ inquiry improved after receiving teachers’ help, elicited by the Inq-Blotter alerts. This inquiry improvement was significantly greater than for matched students who did not receive help from the teacher in response to alerts. Epistemic network analyses were then used to investigate the patterns in the discursive supports provided to students by teachers. These analyses revealed significant differences in the types of support that fostered (versus did not foster) student improvement; differences across teachers were also found. Overall, this study used innovative tools and analyses to understand how teachers use this technological genre of alerting dashboards to dynamically support students in science inquiry. 
    more » « less
  2. Mills, Caitlin; Alexandron, Giora; Taibi, Davide; Lo_Bosco, Giosuè; Paquette, Luc (Ed.)
    Research on epistemic emotions has often focused on how students transition between affective states (e.g., affect dynamics). More recently, studies have examined the properties of cases where a student remains in the same affective state over time, finding that the duration of a student's affective state is important for multiple learning outcomes. However, the likelihood of remaining in a given affective state has not been widely studied across different methods or systems. Additionally, the role of motivational factors in the persistence or decay of affective states remains underexplored. This study builds on two prior investigations into the exponential decay of epistemic emotions, expanding the analysis of affective chronometry by incorporating two detection methods based on student self-reports and trained observer labels in a game-based learning environment. We also examine the relationship between motivational measures and affective decay. Our findings indicate that boredom exhibits the slowest decay across both detection methods, while confusion is the least persistent. Furthermore, we found that higher situational interest and self-efficacy are associated with greater persistence in engaged concentration, as identified by both detection methods. This work provides novel insights into how motivational factors shape affective chronometry, contributing to a deeper understanding of the temporal dynamics of epistemic emotions. 
    more » « less
  3. In this work, we propose a video-based transfer learning approach for predicting problem outcomes of students working with an intelligent tutoring system (ITS). By analyzing a student's face and gestures, our method predicts the outcome of a student answering a problem in an ITS from a video feed. Our work is motivated by the reasoning that the ability to predict such outcomes enables tutoring systems to adjust interventions, such as hints and encouragement, and to ultimately yield improved student learning. We collected a large labeled dataset of student interactions with an intelligent online math tutor consisting of 68 sessions, where 54 individual students solved 2,749 problems. We will release this dataset publicly upon publication of this paper. It will be available at https://www.cs.bu.edu/faculty/betke/research/learning/. Working with this dataset, our transfer-learning challenge was to design a representation in the source domain of pictures obtained “in the wild” for the task of facial expression analysis, and transferring this learned representation to the task of human behavior prediction in the domain of webcam videos of students in a classroom environment. We developed a novel facial affect representation and a user-personalized training scheme that unlocks the potential of this representation. We designed several variants of a recurrent neural network that models the temporal structure of video sequences of students solving math problems. Our final model, named ATL-BP for Affect Transfer Learning for Behavior Prediction, achieves a relative increase in mean F -score of 50 % over the state-of-the-art method on this new dataset. 
    more » « less
  4. Student affect has been found to correlate with short- and long-term learning outcomes, including college attendance as well as interest and involvement in Science, Technology, Engineering, and Mathematics (STEM) careers. However, there still remain significant questions about the processes by which affect shifts and develops during the learning process. Much of this research can be split into affect dynamics, the study of the temporal transitions between affective states, and affective chronometry, the study of how an affect state emerges and dissipates over time. Thus far, these affective processes have been primarily studied using field observations, sensors, or student self-report measures; however, these approaches can be coarse, and obtaining finer grained data produces challenges to data fidelity. Recent developments in sensor-free detectors of student affect, utilizing only the data from student interactions with a computer based learning platform, open an opportunity to study affect dynamics and chronometry at moment-to-moment levels of granularity. This work presents a novel approach, applying sensor-free detectors to study these two prominent problems in affective research. 
    more » « less
  5. The rise of Large Language Models (LLMs) as powerful knowledge-processing tools has sparked a wave of innovation in tutoring and assessment systems. Despite their well-documented limitations, LLMs offer unique capabilities that have been effectively harnessed for automated feedback generation and grading in intelligent learning environments. In this paper, we introduce {\em Project 360}, an experimental intelligent tutoring system designed for teaching SQL. Project 360 leverages the concept of {\em query equivalence} to assess the accuracy of student queries, using ChatGPT’s advanced natural language analysis to measure their semantic distance from a reference query. By integrating LLM-driven evaluation, Project 360 significantly outperforms traditional SQL tutoring and grading systems, offering more precise assessments and context-aware feedback. This study explores the feasibility and limitations of using ChatGPT as the analytical backbone of Project 360, evaluating its reliability for autonomous tutoring and assessment in database education. Our findings provide valuable insights into the evolving role of LLMs in education, highlighting their potential to revolutionize SQL learning while identifying areas for further refinement and improvement. 
    more » « less